- 博客(6)
- 收藏
- 关注
原创 论文阅读(2022)EmotionFlow:capture the dialogue level emotion transitions 捕捉对话层面的情绪转
EMOTIONFLOW: CAPTURE THE DIALOGUE LEVEL EMOTION TRANSITIONS
2022-03-21 15:35:21 1789
原创 论文阅读(2022)Context- and Sentiment-Aware Networksfor Emotion Recognition in Conversation
摘要对话是一个动态交互的过程,通常依靠上下文和常识来传递情感信息。现有的工作不是有机地和动态地将常识性知识整合到对话中,而是机械化的方法,为了探索常识知识在情感识别中的潜在价值,本文提出了一个上下文感知和情感感知的图注意机制(Sentic GAT)来嵌入常识知识,它不仅考虑了常识知识与语境信息之间的依赖关系,而且还能保持常识知识与对应词之间的情感一致性。此外,由于情感强度的帮助,进一步表示了情感一致性的程度在Sentic GAT中,常识知识由上下文感知和情感感知的图注意机制动态表示,上下文话语的内部
2022-03-11 21:13:19 1826
原创 论文阅读(2022)Emotion Recognition in ConversationUsing Capsule Networks and GatedRecurrent Units
基于胶囊网络和门控递归单元的会话情感识别
2022-03-10 20:29:40 951 1
原创 论文阅读(2019)SemEval-2019 Task 3: EmoContextContextual Emotion Detection in Text
摘要SemEval-2019任务3: EmoContext:文本中的上下文情感检测。缺乏面部表情和声音使得检测文本中的情绪成为一个具有挑战性的问题。例如,作为人类,在阅读“你为什么从来不给我发短信!”可以将其解释为悲伤或愤怒的情绪,机器也存在同样的模糊性,然而,对话的上下文有助于检测情绪一、介绍注意,在第一个例子中,“我开始哭了”会被大多数人认为是“悲伤”,然而考虑到上下文,它被证明是一种“快乐”的情绪。类似地,在第二个例子中,最后一轮“尝试做一次”很可能被认为是“其他”,然而,大.
2022-03-08 13:22:33 452 1
原创 论文阅读(2019) EmotionX-IDEA: Emotion BERT – an Affectional Model for Conversation
摘要研究了预训练语言模型BERT的情感识别能力,根据两句结构的BERT框架的性质,使BERT适用于连续对话情感预测任务,这在很大程度上依赖于句子级的上下文感知理解介绍基于文本的情感检测应用可以从单个话语扩展到由一系列话语组成的对话,即使是同一个人说同一句话,它所传达的情感也可能是多种多样的,这可能取决于不同的谈话背景、说话语气或个性。因此,对于情绪检测,来自对话中先前话语的信息相对重要数据集EmotionLines模型主要目标是预测对话中话语的情感。关注的四个主要困难...
2022-03-07 19:56:31 908 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人