生成函数芝士总结

生成函数是用系数来表示一个序列从而表示信息的,也就是说,生成函数的自变量 x x x 取任何值都没有实际意义

当我们取 ∣ x ∣ < 1 |x|<1 x<1

1 1 − x = 1 + x 1 + x 2 + . . . . \frac{1}{1-x}=1+x^1+x^2+.... 1x1=1+x1+x2+....

1 1 + x = − 1 − x 1 − x 2 − . . . . \frac{1}{1+x}=-1-x^1-x^2-.... 1+x1=1x1x2....

1 1 + c x k = ∑ i = 0 + ∞ ( c x ) k \frac{1}{1+cx^k}=\sum\limits_{i=0}^{+\infty} (cx)^k 1+cxk1=i=0+(cx)k

(上述两式证明见组合数学5.5 其中也证明了所有生成函数的定义域是 ∣ x ∣ < 1 |x|<1 x<1

f i b = 1 + x + 2 x 2 + 3 x 3 + 6 = 5 x 4 + . . . . A ( x ) = 1 + x A ( x ) + x 2 A ( x ) A ( x ) = x 1 − x − x 2 fib=1+x+2x^2+3x^3+6=5x^4+....\\ A(x)=1+xA(x)+x^2A(x)\\ A(x)=\frac{x}{1-x-x^2} fib=1+x+2x2+3x3+6=5x4+....A(x)=1+xA(x)+x2A(x)A(x)=1xx2x
C − n m = ( − n ) ( − n − 1 ) . . . ( − n − m + 1 ) m ! = ( − 1 ) m C n + m − 1 m C_{-n}^m=\frac{(-n)(-n-1)...(-n-m+1)}{m!}=(-1)^{m}C_{{n+m-1}}^{m} Cnm=m!(n)(n1)...(nm+1)=(1)mCn+m1m

1 ( 1 − x ) n = ( 1 − x ) − n ( 1 − x ) ( − n ) = ∑ k = 0 + ∞ C − n k x k = ∑ k = 0 + ∞ C n + k − 1 k x k \frac{1}{(1-x)^n}=(1-x)^{-n}\\ (1-x)^{(-n)}=\sum\limits_{k=0}^{+\infty}C_{-n}^{k}x^k\\ =\sum\limits_{k=0}^{+\infty}C_{n+k-1}^kx^k (1x)n1=(1x)n(1x)(n)=k=0+Cnkxk=k=0+Cn+k1kxk

偷个懒粘一下指数型生成函数

在这里插入图片描述
上面是证明

证得 e x = ∑ n = 0 ∞ x n n ! e^x=\sum\limits_{n=0}^{\infty}\frac{x^n}{n!} ex=n=0n!xn
(也就是系数全是1)

当系数是0,1,2,3…时

g ( e ) ( x ) = 0 + x + 2 x 2 2 ! + . . . . . g^{(e)}(x)=0+x+2\frac{x^2}{2!}+..... g(e)(x)=0+x+22!x2+.....

x e x = ∑ n = 1 ∞ x n ( n − 1 ) ! xe^x=\sum\limits_{n=1}^{\infty}\frac{x^n}{(n-1)!} xex=n=1(n1)!xn

和上式相等

当系数是 1 , a , a 2 , a 3 . . . . 1,a,a^2,a^3.... 1,a,a2,a3....

g ( e ) ( x ) = e x a g^{(e)}(x)=e^{xa} g(e)(x)=exa

当系数是 1 , 0 , 1 , 0.... 1,0,1,0.... 1,0,1,0....

e − x = ∑ n = 0 ∞ ( − x ) n n ! e^{-x}=\sum\limits_{n=0}^{\infty}\frac{(-x)^n}{n!} ex=n=0n!(x)n

g ( e ) ( x ) = e − x + e x 2 g^{(e)}(x)=\frac{e^{-x}+e^x}{2} g(e)(x)=2ex+ex

二次剩余

对于一个奇素数 p p p

若有 n = x 2 ( m o d p ) n=x^2 \pmod p n=x2(modp) n n n 是模 p p p 意义下的二次剩余

当且仅当存在 n p − 1 2 ≡ 1 n^{\frac{p-1}{2}}\equiv 1 n2p11 时 二次剩余存在

证明

优秀的二次剩余讲解

第二类斯特林数

n n n 个有标号球放进 m m m 个无编号盒子的方案数

盒子不能空

S ( n , m ) = S ( n − 1 , m − 1 ) + S ( n − 1 , m ) ∗ m S(n,m)=S(n-1,m-1)+S(n-1,m)*m S(n,m)=S(n1,m1)+S(n1,m)m

S ( n , m ) = ∑ i = 1 n S ( n − i , m − 1 ) C ( n − 1 , i − 1 ) S(n,m)=\sum\limits_{i=1}^{n}S(n-i,m-1)C(n-1,i-1) S(n,m)=i=1nS(ni,m1)C(n1,i1)

考虑包含1这个元素的集合里的元素个数

m n = ∑ i = 0 m C ( m , i ) S ( n , i ) i !   = m i ‾ S ( n , i ) m^n=\sum\limits_{i=0}^{m}C(m,i)S(n,i)i!\\ ~=m^{\underline i}S(n,i)\\ mn=i=0mC(m,i)S(n,i)i! =miS(n,i)

考虑 n n n 个球放 m m m 个有标号盒子里(可以空)

i ! i! i! 是给盒子编号

考虑对上述柿子进行二项式反演

f ( x ) = x n , g ( x ) = S ( n , x ) x ! f(x)=x^n,g(x)=S(n,x)x! f(x)=xn,g(x)=S(n,x)x!

g ( m ) = ∑ i = 0 m C ( m , i ) ( − 1 ) m − i f ( i ) g(m)=\sum\limits_{i=0}^mC(m,i)(-1)^{m-i}f(i) g(m)=i=0mC(m,i)(1)mif(i)

m ! S ( n , m ) = ∑ i = 0 m m ! i ! ( m − i ) ! ( − 1 ) m − i f ( i ) m!S(n,m)=\sum\limits_{i=0}^m\frac{m!}{i!(m-i)!}(-1)^{m-i}f(i) m!S(n,m)=i=0mi!(mi)!m!(1)mif(i)

S ( n , m ) = ∑ i = 0 m ( − 1 ) m − i ( m − i ) ! i n i ! S(n,m)=\sum\limits_{i=0}^m\frac{(-1)^{m-i}}{(m-i)!} \frac{i^n}{i!} S(n,m)=i=0m(mi)!(1)mii!in

对应卷积形式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值