15.模拟e^x的麦克劳林展开式

本文介绍了如何使用Python模拟e^x的麦克劳林展开式,通过逐步实现和数据可视化来展示逼近过程。首先导入必要的库,然后分析泰勒公式,接着绘制y=e^x函数及逼近函数的图像,最后给出完整代码实现。
摘要由CSDN通过智能技术生成

导入第三方库

import numpy as np
from numpy import random
import matplotlib.pyplot as plt
import random

%matplotlib inline

# 解决中文乱码
plt.rcParams["font.sans-serif"]=["KaiTi"]
plt.rcParams["font.family"]="sans-serif"

# 解决符号无法显示的问题
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题

# 让图表变成矢量形式,,显示更清晰
%config InlineBackend.figure_format="svg"

e^x的麦克劳林展开式

在这里插入图片描述

f(x)=e^x
=f(0+ f′(0)x+ f″(0)x ²/ 2!+...+ fⁿ(0)x^n/n!+Rn(x)
=1+x+x^2/2!+x^3/3!+...+x^n/n!+Rn(x) 

其中 f(0= f′(0=...= fⁿ(0=e^0=1

如果f(x)在点x=x0具有任意阶导数,则幂级数
在这里插入图片描述
称为f(x)在点x0处的泰勒级数。

最终结果

在这里插入图片描述

一步步实现

分析

由泰勒公式的性质可知,y=e^x的图形其实是由许许多多其他函数的图形渐渐逼近,最终才形成了y=e^x函数的图形。

在绘图的时候,我们不仅要绘制出y=e^x的图形,还需要绘制出其他函数的图形,要将这个逼近的过程展现出来。

1.生成y=e^x函数的图像

在这里插入图片描述
在这里插入图片描述

2.生成其他函数的图像

在生成其他函数的图像的时候,由于这些函数之间存在着一定的规律,一步一步地生成过于繁琐又显得愚蠢,所以我们可以采用循环的方式来实现。

# x轴数据
x=np.linspace(
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值