导入第三方库
import numpy as np
from numpy import random
import matplotlib.pyplot as plt
import random
%matplotlib inline
# 解决中文乱码
plt.rcParams["font.sans-serif"]=["KaiTi"]
plt.rcParams["font.family"]="sans-serif"
# 解决符号无法显示的问题
plt.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题
# 让图表变成矢量形式,,显示更清晰
%config InlineBackend.figure_format="svg"
e^x的麦克劳林展开式
f(x)=e^x
=f(0)+ f′(0)x+ f″(0)x ²/ 2!+...+ fⁿ(0)x^n/n!+Rn(x)
=1+x+x^2/2!+x^3/3!+...+x^n/n!+Rn(x)
其中 f(0)= f′(0)=...= fⁿ(0)=e^0=1。
如果f(x)在点x=x0具有任意阶导数,则幂级数
称为f(x)在点x0处的泰勒级数。
最终结果
一步步实现
分析
由泰勒公式的性质可知,y=e^x的图形其实是由许许多多其他函数的图形渐渐逼近,最终才形成了y=e^x函数的图形。
在绘图的时候,我们不仅要绘制出y=e^x的图形,还需要绘制出其他函数的图形,要将这个逼近的过程展现出来。
1.生成y=e^x函数的图像
2.生成其他函数的图像
在生成其他函数的图像的时候,由于这些函数之间存在着一定的规律,一步一步地生成过于繁琐又显得愚蠢,所以我们可以采用循环的方式来实现。
# x轴数据
x=np.linspace(