Flink 的 Checkpoint配置详解

本文围绕Flink的Checkpoint展开,介绍其可用于容错,保证数据计算的精准一次或至少一次。阐述了检查点算法,包括Barrier对齐和非Barrier对齐。说明了精准一次和至少一次的前提条件,还提及启用检查点及常用配置参数,如最终检查点、开启Changelog等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Flink 的 Checkpoint 总结
1、简介
1)概述

Flink中的每个函数和运算符都可以有状态,状态中存储计算的中间结果。

状态可以用于容错,在任务被动失败或者主动重启时,可以通过 Checkpoint 或 Savepoint 从先前的状态中恢复计算数据,以保证数据计算的 ExactlyOnec(精准一次)或 AtleastOnce (至少一次)。

2)检查点算法

1.Barrier对齐: 一个Task 收到 所有上游 同一个编号的 barrier之后,才会对自己的本地状态做 备份
精准一次: 在barrier对齐过程中,barrier后面的数据 阻塞等待(不会越过barrier)
至少一次: 在barrier对齐过程中,先到的barrier,其后面的数据 不阻塞 接着计算

2.非Barrier对齐: 一个Task 收到 第一个 barrier 时,就开始 执行备份,能保证 精准一次
先到的barrier,将 本地状态 备份, 其后面的数据接着计算输出
未到的barrier,其 前面的数据 接着计算输出,同时 也保存到 备份中
最后一个barrier到达 该Task时,这个Task的备份结束

2、前提
1) ExactlyOnec(精准一次)

上游:可以重发数据(如:消息队列:Kafka\分布式文件系统:HDFS)

下游:支持幂等性(如:Doris 支持去重)

2) AtleastOnce(至少一次)

上游:可以重发数据(如:消息队列:Kafka\分布式文件系统:HDFS)

3、启用检查点
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

// 启用 Checkpoint 每 5 秒 一次,模式为 EXACTLY_ONCE
env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
4、常用配置参数
1)最终检查点
// 最终检查点,1.15开始,默认是true
configuration.set(ENABLE_CHECKPOINTS_AFTER_TASKS_FINISH, false);
2)开启 Changelog
// 要求checkpoint的最大并发必须为1
env.enableChangelogStateBackend(true);
3)代码中用到HDFS,需要导入hadoop依赖、指定访问HDFS的用户名
System.setProperty("HADOOP_USER_NAME", "HADOOP");
4)开启非对齐检查点(barrier非对齐)
// 开启的要求: Checkpoint模式必须是精准一次,最大并发必须设为1
checkpointConfig.enableUnalignedCheckpoints();

// 开启非对齐检查点才生效: 默认0,表示一开始就直接用 非对齐的检查点
// 如果大于0,一开始用 对齐的检查点(barrier对齐),对齐的时间超过这个参数,自动切换成 非对齐检查点(barrier非对齐)
checkpointConfig.setAlignedCheckpointTimeout(Duration.ofMinutes(4));
5)检查点常用配置
// 1、启用检查点: 默认是barrier对齐的,周期为5s, 精准一次
env.enableCheckpointing(5000, CheckpointingMode.EXACTLY_ONCE);
CheckpointConfig checkpointConfig = env.getCheckpointConfig();
        
// 2、指定检查点的存储位置
checkpointConfig.setCheckpointStorage("hdfs:///ip:port/dir");

// 3、checkpoint的超时时间: 默认10分钟
checkpointConfig.setCheckpointTimeout(60000);

// 4、同时运行中的checkpoint的最大数量
checkpointConfig.setMaxConcurrentCheckpoints(1);

// 5、最小等待间隔: 上一轮checkpoint结束 到 下一轮checkpoint开始 之间的间隔
checkpointConfig.setMinPauseBetweenCheckpoints(1000);

// 6、取消作业时,checkpoint的数据 是否保留在外部系统
// DELETE_ON_CANCELLATION:主动cancel时,删除存在外部系统的chk-xx目录 (如果是程序突然挂掉,不会删)
// RETAIN_ON_CANCELLATION:主动cancel时,外部系统的chk-xx目录会保存下来
        checkpointConfig.setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);

// 7、允许 checkpoint 连续失败的次数,默认 0 表示 checkpoint 一失败,job 就挂掉
checkpointConfig.setTolerableCheckpointFailureNumber(10);
6)其它配置参数
KeyDefaultTypeDescription
state.backend.incrementalfalseBoolean是否开启增量检查点
state.backend.local-recoveryfalseBoolean是否开启本地恢复(支持 EmbeddedRocksDBStateBackend 和 HashMapStateBackend).
state.checkpoints.num-retained1Integer要保留的已完成检查点的最大数量。
state.savepoints.dir(none)Stringsavepoint保存的地址
state.storage.fs.memory-threshold20 kbMemorySize状态数据文件的最小大小。所有小于此状态块的状态块都内联存储在根检查点元数据文件中。此配置的最大内存阈值为1MB。
state.storage.fs.write-buffer-size4096Integer写入文件系统的检查点流的写入缓冲区的默认大小。实际的写入缓冲区大小被确定为此选项和选项“state.storage.fs.memory-threshold”的最大值。
taskmanager.state.local.root-dirs(none)String定义了用于存储基于文件的状态以进行本地恢复的根目录。
Flink配置Checkpoint可以通过以下方式进行设置: ```java StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); // 每间隔2000ms进行CheckPoint env.enableCheckpointing(2000); // 设置CheckPoint模式为EXACTLY_ONCE env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE); // 设置CheckPoint超时时间为50000ms env.getCheckpointConfig().setCheckpointTimeout(50000); // 设置最大并发的CheckPoint数量为1 env.getCheckpointConfig().setMaxConcurrentCheckpoints(1); // 开启非对齐的CheckPoint env.getCheckpointConfig().enableUnalignedCheckpoints(); ``` 其中,`enableCheckpointing(n)`方法用于开启Checkpoint,参数`n`表示以毫秒为单位的checkpoint间隔。`setCheckpointingMode()`方法用于设置Checkpoint模式,`setCheckpointTimeout()`方法用于设置Checkpoint超时时间,`setMaxConcurrentCheckpoints()`方法用于设置最大并发的Checkpoint数量,`enableUnalignedCheckpoints()`方法用于开启非对齐的Checkpoint。\[1\] 此外,在`flink-conf.yaml`配置文件中也可以进行Checkpoint的相关配置,主要包括state backend的配置,例如`state.backend.async`、`state.backend.incremental`、`state.checkpoints.dir`、`state.savepoints.dir`等。\[3\] #### 引用[.reference_title] - *1* *2* [flinkcheckpoint配置](https://blog.csdn.net/weixin_43857576/article/details/122110132)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Flinkcheckpoint配置详解](https://blog.csdn.net/worldchinalee/article/details/107716744)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫猫爱吃小鱼粮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值