最大公约数 和 最小公倍数

最大公约数gcd

一些结论积累

  • 引理:若正整数 a + b = c a+b=c a+b=c,则 a a a b b b 互质的充要条件是 a a a c c c 互质。
    证明: 先证充分性,如果 gcd ⁡ ( a , b ) = 1 \operatorname{gcd}(a, b)=1 gcd(a,b)=1,而反证设 gcd ⁡ ( a , c ) = u > 1 \operatorname{gcd}(a, c)=u>1 gcd(a,c)=u>1,则 b = c − a b=c-a b=ca 也是 u u u 的倍数,矛盾。再证必要性,如果 gcd ⁡ ( a , c ) = 1 \operatorname{gcd}(a, c)=1 gcd(a,c)=1,而 gcd ⁡ ( a , b ) = u > 1 \operatorname{gcd}(a, b)=u>1 gcd(a,b)=u>1,同理 c = a + b c=a+b c=a+b u u u 的倍数,矛盾。
  • ∀ a , b ∈ N , a ≥ b , 有 g c d ( a , b ) = g c d ( b , a − b ) = g c d ( a , a − b ) \forall a,b\in N,a\ge b,有gcd(a,b)=gcd(b,a-b)=gcd(a,a-b) a,bN,ab,gcd(a,b)=gcd(b,ab)=gcd(a,ab).
  • ∀ a , b ∈ N , 有 g c d ( 2 a , 2 b ) = 2 g c d ( a , b ) \forall a,b\in N,有gcd(2a,2b)=2gcd(a,b) a,bN,gcd(2a,2b)=2gcd(a,b).
  • ∀ a , b ∈ N , b ≠ 0 , 有 g c d ( a , b ) = g c d ( b , a % b ) \forall a,b\in N,b\ne 0,有gcd(a,b)=gcd(b,a\% b) a,bN,b=0,gcd(a,b)=gcd(b,a%b).
九章算术·更相减损术

∀ a , b ∈ N , a ≥ b , 有 g c d ( a , b ) = g c d ( b , a − b ) = g c d ( a , a − b ) \forall a,b\in N,a\ge b,有gcd(a,b)=gcd(b,a-b)=gcd(a,a-b) a,bN,ab,gcd(a,b)=gcd(b,ab)=gcd(a,ab).
∀ a , b ∈ N , 有 g c d ( 2 a , 2 b ) = 2 g c d ( a , b ) \forall a,b\in N,有gcd(2a,2b)=2gcd(a,b) a,bN,gcd(2a,2b)=2gcd(a,b).

欧几里得算法(辗转相除法)

∀ a , b ∈ N , b ≠ 0 , 有 g c d ( a , b ) = g c d ( b , a % b ) \forall a,b\in N,b\ne 0,有gcd(a,b)=gcd(b,a\% b) a,bN,b=0,gcd(a,b)=gcd(b,a%b).

定理:设 a = q b + r a=qb+r a=qb+r,其中 a a a, b b b, q q q, r r r都是正整数,则有: g c d ( a , b ) = g c d ( b , r ) = g c d ( a , r ) gcd(a,b)=gcd(b,r)=gcd(a,r) gcd(a,b)=gcd(b,r)=gcd(a,r).
基于上述定理,用代码实现如下:

int gcd(int a,int b)
{
	if(b==0) return a;
	return gcd(b,a%b);
}
//或者:
int gcd(int a,int b)
{
	if(a==0) return b;
	return gcd(b%a,a);
}
//或:
int gcd(int a,int b){
	return b?gcd(b,a%b):a;
}

算法复杂度:
拉梅定理:用辗转相除法计算两个正整数的最大公因子时,所需的除法次数不会超过两个整数较小的那个数的倍数的5倍。
有时,也可以直接使用C语言的库函数__gcd()

相关题目:
华华对月月的忠诚

#include <bits/stdc++.h>
using namespace std;

#define int long long
int a,b,n;

signed main()
{
	scanf("%lld %lld %lld",&a,&b,&n);
	int ans=__gcd(a,b);
	printf("%lld\n",ans);
}
好题:求 x x x使得 a ≡ b ≡ c ( m o d x ) a\equiv b \equiv c\pmod x abc(modx)

a = b = c a=b=c a=b=c时,会有无穷解。
否则,答案就是 g c d ( b − a , c − b ) gcd(b-a,c-b) gcd(ba,cb)的因子,假设 a < = b < = c a<=b<=c a<=b<=c.

感性认知:一个数%x的结果=这个数+y%x的结果,当且仅当x是y的因子。

神奇数字

#include <bits/stdc++.h>
using namespace std;
int t,a[3];
int main(){
	scanf("%d",&t);
	while(t--){
		scanf("%d%d%d",a+0,a+1,a+2); 
		if(a[0]==a[1] && a[1]==a[2]) {
			printf("-1\n");
		}
		else {
			sort(a,a+3);
			vector<int> v;
			int gcd=__gcd(a[1]-a[0],a[2]-a[1]);
			for(int i=1;i*i<=gcd;++i) {
				if(gcd%i==0){
					v.push_back(i);
					if(gcd/i!=i) v.push_back(gcd/i);
				}
			}
			sort(v.begin(),v.end());
			for(auto x:v) printf("%d ",x);
			printf("\n");
		}
	}
}

最小公倍数lcm

性质:

  • $ {\textstyle \sum_{i=1}^{n}} {\textstyle \sum_{j=1}^{n}}[lcm(i,j)=n]= {\textstyle \prod_{i=1}^{k}}(2e_i+1)$

例题:LightOJ-1236 Pairs Forming LCM
题意:求解 l c m ( i , j ) = n lcm(i,j)=n lcm(i,j)=n ( i , j ) (i,j) (i,j)对数, ( i ≤ j ) (i\le j) (ij)
参考代码:

#include <bits/stdc++.h>
using namespace std;

#define int long long 

//线筛 筛出 1e7内所有质因子
const int N=1e7+1;
int cnt=0,pri[N];
bool v[N];

void prime(int n){
	for(int i=2;i<=n;++i){
		if(!v[i]){
			v[i]=i;
			pri[++cnt]=i;
		}
		for(int j=1;pri[j]<=n/i;++j){
			v[pri[j]*i]=pri[j];
			if(i%pri[j]==0) break;
		}
	}
} 


int cal(int n){
	int ans=1;
	for(int i=1;i<=cnt;++i){
		if(pri[i]>n) break;
		if(n%pri[i]==0){
			int num=0;
			while(n%pri[i]==0) num++,n/=pri[i];
			ans*=(num*2+1); 
		}
	}
	if(n>1) ans*=3;
	return ans;
}

int T,n,cs;

signed main(){
	ios::sync_with_stdio(0);
	cin.tie(0);
	cout.tie(0);
	prime(N-1);
	cin>>T;
	while(T--){
		cin>>n;
		int ans=(cal(n)+1)/2;
		cout<<"Case "<<(++cs)<<": "<<ans<<'\n';
	}
} 

最大公约数(lcm)

这道题数据比较大(ull),当数据较大时,可以考虑先除后乘。

#include <bits/stdc++.h>
using namespace std;

#define int long long
int a,b;

signed main() 
{
	scanf("%lld %lld",&a,&b);
	int d=__gcd(a,b);
	int ans=a/d*b;
	printf("%lld\n",ans);
}

从这道题,我们也可以看出,__gcd()可以求很大的数。

最大公约数 和 最小公倍数 的关系

  • ∀ a , b ∈ N , g c d ( a , b ) ∗ l c m ( a , b ) = a ∗ b \forall a,b\in N,gcd(a,b)*lcm(a,b)=a*b a,bN,gcd(a,b)lcm(a,b)=ab.
  • 定理:对于正整数 a , b a,b a,b,设 g c d ( a , b ) = k gcd(a,b)=k gcd(a,b)=k,则存在 g c d ( a / k , b / k ) = 1 gcd(a/k,b/k)=1 gcd(a/k,b/k)=1.
  • 定理:对于正整数 a , b a,b a,b,设 l c m ( a , b ) = k lcm(a,b)=k lcm(a,b)=k,则存在 g c d ( k / a , k / b ) = 1 gcd(k/a,k/b)=1 gcd(k/a,k/b)=1.

[NOIP2009]Hankson的趣味题

设某未知正整数 x x x满足:
x x x a 0 a0 a0的最大公约数是 a 1 a1 a1 x x x b 0 b0 b0的最小公倍数是 b 1 b1 b1
求满足条件的 x x x个数。

#include <bits/stdc++.h>
using namespace std;

#define int long long
int n,a0,a1,b0,b1;

signed main()
{
	scanf("%lld",&n);
	for(int i=1;i<=n;++i)
	{
		scanf("%lld%lld%lld%lld",&a0,&a1,&b0,&b1);
		int ans=0;
		int t1=a0/a1;
		int t2=b1/b0;
		for(int i=1;i*i<=b1;++i)
		{
			if(b1%i==0)
			{
				if(i%a1==0 && __gcd(i/a1,t1)==1 && __gcd(b1/i,t2)==1) ans++;
				int t=b1/i;
				if(t==i) continue;
				if(t%a1==0 && __gcd(t/a1,t1)==1 && __gcd(b1/t,t2)==1) ans++;
			}
		}
		printf("%lld\n",ans);
	}
}
  • 27
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值