描述
给定一棵结点数为 n 二叉搜索树,请找出其中的第 k 小的TreeNode结点。
数据范围: 0 \le n <= 1000≤n<=100,0\le k \le 1000≤k≤100,树上每个结点的值满足 0 \le val \le 1000≤val≤100
要求:空间复杂度 O(1)O(1),时间复杂度 O(n)O(n)
注意:不是返回结点的值
如输入{5,3,7,2,4,6,8},3时,二叉树{5,3,7,2,4,6,8}如下图所示:
该二叉树所有节点按结点值升序排列后可得[2,3,4,5,6,7,8],所以第3个结点的结点值为4,故返回对应结点值为4的结点即可。
输入描述:
提示:当n为0或者k为0时返回空。
示例1
输入:
{5,3,7,2,4,6,8},3
复制返回值:
4
复制说明:
按结点数值升序顺序可知第三小结点的值为4 ,故返回对应结点值为4的结点即可。
示例2
输入:
{},1
复制返回值:
"null"
复制说明:
结点数n为0,所以返回对应编程语言的空结点即可。
解题:
function TreeNode(x) {
this.val = x;
this.left = null;
this.right = null;
}
function KthNode(pRoot, k)
{
// write code here
/* if(pRoot===null || k===0){
return null
}
let nam=0
let se=[]
//这里使用栈的先进后出,后进现在出的原则来做的
//首先判断pRoot不为空或者se.length不为0时来做的
while(pRoot || se.length){
//这里时当pRoot不为零时就一直遍历我们左边的节点,任何加入到数组中
while(pRoot){
se.push(pRoot)
pRoot=pRoot.left
}
//这里时遵循先进后出的原则,每次执行一次就得到一个我们要移除的值,第一次时倒数第二的值,第二次是第三的值,
//以此类推
//然后让pRoo等于这个移除的值的右边的值,然后给我们的循环,同时把右边的值加入数组,也遍历左边的数据,添加到数组
//然后再得到右边的值,遍历左边的值,都加入数组,以此类推
const n=se.pop()
//这个是再遍历值的过程中,让nam不断的++,最后得到n的值
nam++
if(nam===k) return n
pRoot=n.right
}*/
//使用遍历的方式
if(pRoot===null || k===0){
return null
}
let uio=null
let ni=0
const kop=function(pRoot){
if(pRoot){
kop(pRoot.left)
ni++
if(ni===k){
uio=pRoot;
}
kop(pRoot.right)
}
}
kop(pRoot)
return uio
}
module.exports = {
KthNode : KthNode
};