描述
给定一棵结点数为n 二叉搜索树,请找出其中的第 k 小的TreeNode结点值。
1.返回第k小的节点值即可
2.不能查找的情况,如二叉树为空,则返回-1,或者k大于n等等,也返回-1
3.保证n个节点的值不一样
数据范围: 0 \le n \le10000≤n≤1000,0 \le k \le10000≤k≤1000,树上每个结点的值满足0 \le val \le 10000≤val≤1000
进阶:空间复杂度 O(n)O(n),时间复杂度 O(n)O(n)
如输入{5,3,7,2,4,6,8},3时,二叉树{5,3,7,2,4,6,8}如下图所示:
该二叉树所有节点按结点值升序排列后可得[2,3,4,5,6,7,8],所以第3个结点的结点值为4,故返回对应结点值为4的结点即可。
示例1
输入:
{5,3,7,2,4,6,8},3
返回值:
4
示例2
输入:
{},1
返回值:
-1
备注:
当树是空
思路
二叉搜索树按照二叉树中序遍历后的结果就是按升序排序好的结果。
代码
/**
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* };
*/
class Solution {
public:
/**
* 代码中的类名、方法名、参数名已经指定,请勿修改,直接返回方法规定的值即可
*
*
* @param proot TreeNode类
* @param k int整型
* @return int整型
*/
int KthNode(TreeNode* proot, int k) {
// write code here
if (proot == NULL || k <= 0) {
return -1;
}
int res = -1;
int count = 0;
midNode(proot, count, k, res);
return res;
}
// count用于记录当前遍历到的节点位置,res用于存储结果
void midNode(TreeNode *proot, int &count, int k, int &res) {
if (proot == NULL) {
return;
}
if (proot->left != NULL) {
midNode(proot->left, count, k, res);
}
count = count + 1;
if (count == k) {
res = proot->val;
return;
}
if (proot->right != NULL) {
midNode(proot->right, count, k, res);
}
}
};
参考
https://www.nowcoder.com/practice/57aa0bab91884a10b5136ca2c087f8ff?tpId=13&tqId=2305268&ru=/exam/oj/ta&qru=/ta/coding-interviews/question-ranking&sourceUrl=%2Fexam%2Foj%2Fta%3Fpage%3D1%26tpId%3D13%26type%3D13