torch.max()用法

本文详细介绍了PyTorch中torch.max函数的用法,包括获取张量的最大值及其索引。通过实例展示了如何按维度求最大值,并解释了在深度学习中这些操作对于类别预测的重要性。此外,还演示了如何比较两个张量并返回最大值的张量。
摘要由CSDN通过智能技术生成

函数:torch.max(input, dim, keepdim=False, out=None)
返回值:Tensor, LongTensor

作用:输入tensor,按维度返回其最大值,并返回其最大维度的索引。


创建2个张量a和b

a = torch.tensor([[10, 5, 1], [2, 4, 3]])
b = torch.tensor([[6, 8, 9], [1, 4, 2]])
print(a)
print(b)
tensor([[10,  5,  1],
        [ 2,  4,  3]])
tensor([[6, 8, 9],
        [1, 4, 2]])

输出其最大值

print(torch.max(a))
print(torch.max(b))
tensor(10)
tensor(9)

按维度输出最大值,其中0是按列索引,1是按行索引,在输出最大值的同时,输出最大值所在的索引的位置。
*在深度学习中,知道了最大值索引位置,就知道了one-hot编码,知道了one-hot编码,就可以进行类别预测了。

print(torch.max(a, 0))
print("-------------------------")
print(torch.max(b, 1))
torch.return_types.max(
values=tensor([10,  5,  3]),
indices=tensor([0, 0, 1]))
-------------------------
torch.return_types.max(
values=tensor([9, 4]),
indices=tensor([2, 1]))

比较a和b,按维度输出最大值

c = torch.max(a, b)
print(c)
tensor([[10,  8,  9],
        [ 2,  4,  3]])

如果觉得有帮助,欢迎点赞+收藏,笔芯~
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值