证明: 若$q=m$ 或 $q \neq m$ 但$P[q+1] \neq a$ ,则$\sigma(P_qa) = \sigma(P_{\pi[q]}a)$

证明: 若 q = m q=m q=m q ≠ m q \neq m q=m P [ q + 1 ] ≠ a P[q+1] \neq a P[q+1]=a ,则 σ ( P q a ) = σ ( P π [ q ] a ) \sigma(P_qa) = \sigma(P_{\pi[q]}a) σ(Pqa)=σ(Pπ[q]a)

总体的证明思路为将原问题(求 σ ( P q a ) \sigma(P_qa) σ(Pqa) 或者 求 σ ( P π [ q ] a ) \sigma(P_{\pi[q]}a) σ(Pπ[q]a))拆分为两个子步骤,然后会发现这两个原问题对应的子步骤都是一样的。

对于 σ ( P q a ) \sigma(P_qa) σ(Pqa),可以将它转化为如下问题:

  1. A = { k ∣ k < q   ,   P k ⊐ P q } A=\{ k \mid k<q \, , \, P_k \sqsupset P_q\} A={kk<q,PkPq}

    上面的条件 q = m q=m q=m q ≠ m q \neq m q=m P [ q + 1 ] ≠ a P[q+1] \neq a P[q+1]=a k = q k=q k=q 的情形排除在需要考虑的范围。

  2. A中的元素k从大到小作测试: P k + 1 = = a ? P_{k+1}==a ? Pk+1==a?
    若存在相等的情形,则 σ ( P q a ) = k + 1 \sigma(P_qa)=k+1 σ(Pqa)=k+1
    若均不等,则 σ ( P q a ) = 0 \sigma (P_qa)=0 σ(Pqa)=0

  3. 以上问题中的集合A可以等价为 A = π ∗ [ q ] A=\pi^*[q] A=π[q]

对于 σ ( P π [ q ] a ) \sigma(P_{\pi[q]}a) σ(Pπ[q]a),可以将它转化为如下问题:

  1. B = { k ∣ k ≤ π [ q ]   ,   P k ⊐ P π [ q ] } B=\{ k \mid k \leq \pi[q] \, , \, P_k \sqsupset P_{ \pi[q]}\} B={kkπ[q],PkPπ[q]}
  2. B中的元素k从大到小作测试: P k + 1 = = a ? P_{k+1}==a ? Pk+1==a?
    若存在相等的情形,则 σ ( P π [ q ] a ) = k + 1 \sigma(P_{\pi[q]}a)=k+1 σ(Pπ[q]a)=k+1
    若均不等,则 σ ( P π [ q ] a ) = 0 \sigma(P_{\pi[q]}a)=0 σ(Pπ[q]a)=0
  3. 以上问题中的集合B可以等价为 B = { k ∣ k < π [ q ]   ,   P k ⊐ P π [ q ] } ⋃ { π [ q ] } = π ∗ [ π [ q ] ] ⋃ { π [ q ] } = π ∗ [ q ] B=\{ k \mid k < \pi[q] \, , \, P_k \sqsupset P_{ \pi[q]}\} \bigcup \{ \pi[q]\}=\pi^*[\pi[q]] \bigcup \{\pi[q]\}=\pi^*[q] B={kk<π[q],PkPπ[q]}{π[q]}=π[π[q]]{π[q]}=π[q]

比较可知 A = B A=B A=B,故两个原问题是等价的,进而得: σ ( P q a ) = σ ( P π [ q ] a ) \sigma(P_qa) = \sigma(P_{\pi[q]}a) σ(Pqa)=σ(Pπ[q]a) \qquad \qquad #

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值