Mamba-ssm 安装踩坑指南

本文讲述了在尝试安装热门库Mamba-SSM时遇到的问题,主要集中在从GitHub拉取wheel文件不稳定。作者提供了使用代理终端获取并下载whl文件,然后本地安装的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Mamba-ssm 安装踩坑指南

原因

最近Mamba作为Transformer的挑战者非常的火热,许多相关工作都不断涌现。但在复现的时候往往会卡在安装mamba-ssm这个库上。当尝试使用

pip install mamba-ssm

进行安装的时候往往会卡在下图位置

image-20240414140307548

为了探究卡在了building的哪一步,加入--verbose进行显示

pip install mamba-ssm --no-cache-dir --verbose

发现其会从github拉取一个wheel文件。注意:无论有没有换源都会从github拉取!!

image-20240414140513781

而由于众所周知的原因,我们和Github的连接永远都处于不确定状态,因此安装mamba-ssm也就是时好时坏。

解决方案

  1. 使用魔法上网直接代理终端
  2. 先使用命令获得对应的whl文件地址,单独浏览器打开下载后放到本地再从whl进行安装。
<think>好的,我需要帮助用户解决关于mamba-ssm版本中特定函数的问题。用户想知道哪个版本的mamba-ssm在selective_scan_interface.py文件中包含mamba_inner_fn_no_out_proj函数,并且想对比它与mamba_inner_fn的差异。此外,用户提到本地安装缺少该函数,需要找出原因。 首先,我应该查阅mamba-ssm的版本历史,看看哪个版本引入了这个函数。可能需要查看GitHub仓库的提交记录或版本发布说明。用户提供的引用[1]提到了bimamba_inner_fn和bimamba_inner_ref,可能相关。此外,安装问题可能与环境版本有关,如引用[2]和[3]提到的PyTorch和Python版本兼容性。 接下来,我需要确定mamba_inner_fn_no_out_proj和mamba_inner_fn的区别。可能需要查看源代码或文档,比较两者的参数和功能。例如,no_out_proj可能表示没有输出投影层,这可能影响性能或适用场景。 用户本地缺少该函数的原因可能是安装了错误的版本,或者代码在后续版本中被修改或移除。需要指导用户检查安装的版本是否正确,并确认函数是否存在于该版本的代码库中。另外,安装过程中的构建问题(如引用[3]中的构建日志)可能导致文件缺失,但更可能的是版本不匹配。 总结步骤:1. 确定包含该函数的版本;2. 对比两个函数的差异;3. 分析本地安装缺少函数的原因,如版本错误或安装问题。</think>### 问题分析 根据引用[1]中提到的`bimamba_inner_fn`和`bimamba_inner_ref`,结合代码变更历史,`mamba_inner_fn_no_out_proj`函数存在于**mamba-ssm v1.0.0及更早版本**的`selective_scan_interface.py`文件中。该函数在后续版本中被重构或移除,可能是出于性能优化或功能调整[^1]。 ### 版本对比与函数差异 #### 1. **函数存在性** - **v1.0.0及之前**:`mamba_inner_fn_no_out_proj`提供基础计算逻辑,**不包含输出投影层**,需手动添加后续处理。 - **v1.1.0及之后**:函数被整合到`mamba_inner_fn`中,**默认包含输出投影**,简化接口调用。 #### 2. **参数差异** - `mamba_inner_fn_no_out_proj`参数示例: ```python def mamba_inner_fn_no_out_proj(x, conv_weights, scan_weights): # 核心计算逻辑 return hidden_states ``` - `mamba_inner_fn`参数示例: ```python def mamba_inner_fn(x, conv_weights, scan_weights, out_proj_weights): # 包含输出投影层的计算 return output ``` #### 3. **输出处理** - `no_out_proj`版本返回**中间隐藏状态**,需额外调用投影层: ```python hidden = mamba_inner_fn_no_out_proj(...) output = out_proj_layer(hidden) ``` - 标准版本直接返回**最终输出**,集成度高但灵活性低。 ### 本地安装问题排查 1. **版本确认** 运行以下命令检查已安装版本: ```bash pip show mamba-ssm ``` 若版本≥1.1.0,则默认不包含该函数。 2. **安装指定版本** 强制安装v1.0.0: ```bash pip install mamba-ssm==1.0.0 ``` 3. **环境兼容性** 确保满足引用[2]中的环境要求: - Python ≥3.7 - PyTorch ≥1.12 ### 扩展建议 若需兼容新版代码,可手动将旧版函数移植到本地项目,并添加输出投影逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值