等价无穷小,只能中午用,因为早晚要出事!

极限中的等价替换误区

缘起

起因十分简单,我舍友遇上一到选择题,做错了,但不知道为什么,我刚开始也做错了,后面得知某些书上竟有现成的结论,但没给证明,我便尝试地给出了证明
在这里插入图片描述
答案选C,容易错选为A,后面再细讲正确解法。

结论

Theorem 1: Assume α ∼ α ′ , β ∼ β ′ \alpha\sim\alpha',\beta\sim\beta' αα,ββ, if lim ⁡ α ′ β ′ = A ≠ 1 \lim\frac{\alpha'}{\beta'}=A\neq 1 limβα=A=1, then α − β ∼ α ′ − β ′ \alpha-\beta\sim\alpha'-\beta' αβαβ
Theorem 2: Assume α ∼ α ′ , β ∼ β ′ \alpha\sim\alpha',\beta\sim\beta' αα,ββ, if lim ⁡ α ′ β ′ = A ≠ − 1 \lim\frac{\alpha'}{\beta'}=A\neq -1 limβα=A=1, then α + β ∼ α ′ + β ′ \alpha+\beta\sim\alpha'+\beta' α+βα+β

证明

只给出定理一的证明,定理二同理可得;
Proof:(写成关于 x 的函数有助于理解)
∵ α ( x ) ∼ α ′ ( x ) , β ( x ) ∼ β ′ ( x ) \because \alpha(x)\sim\alpha'(x),\beta(x)\sim\beta'(x) α(x)α(x),β(x)β(x)
∴ α ( x ) = α ′ ( x ) + o ( α ′ ( x ) ) , β ( x ) = β ′ ( x ) + o ( β ′ ( x ) ) \therefore\alpha(x)=\alpha'(x)+o(\alpha'(x)),\beta(x)=\beta'(x)+o(\beta'(x)) α(x)=α(x)+o(α(x))β(x)=β(x)+o(β(x))
∵ lim ⁡ x → 0 α ′ β ′ = A \because \lim_{x\to 0}\frac{\alpha'}{\beta'}=A limx0βα=A
∴ α ′ ( x ) = A β ′ ( x ) + o ( β ′ ( x ) ) \therefore\alpha'(x)=A\beta'(x)+o(\beta'(x)) α(x)=Aβ(x)+o(β(x))
∴ lim ⁡ x → 0 α ( x ) − β ( x ) α ′ ( x ) − β ′ ( x ) = lim ⁡ x → 0 α ′ ( x ) − β ′ ( x ) + o ( α ′ ( x ) ) + o ( β ′ ( x ) ) ( A − 1 ) β ′ ( x ) + o ( β ′ ( x ) ) \therefore\lim_{x\to 0}\frac{\alpha(x)-\beta(x)}{\alpha'(x)-\beta'(x)}=\lim_{x\to 0}\frac{\alpha'(x)-\beta'(x)+o(\alpha'(x))+o(\beta'(x))}{(A-1)\beta'(x)+o(\beta'(x))} limx0α(x)β(x)α(x)β(x)=limx0(A1)β(x)+o(β(x))α(x)β(x)+o(α(x))+o(β(x))

     = lim ⁡ x → 0 ( A − 1 ) β ′ ( x ) + o ( α ′ ( x ) ) + o ( β ′ ( x ) ) ( A − 1 ) β ′ ( x ) + o ( β ′ ( x ) ) ~~~~=\lim_{x\to 0}\frac{(A-1)\beta'(x)+o(\alpha'(x))+o(\beta'(x))}{(A-1)\beta'(x)+o(\beta'(x))}     =limx0(A1)β(x)+o(β(x))(A1)β(x)+o(α(x))+o(β(x))

A ≠ 1 A\ne 1 A=1 时, 有 lim ⁡ x → 0 α ( x ) − β ( x ) α ′ ( x ) − β ′ ( x ) = lim ⁡ x → 0 ( A − 1 ) β ′ ( x ) ( A − 1 ) β ′ ( x ) = 1 \lim_{x\to 0}\frac{\alpha(x)-\beta(x)}{\alpha'(x)-\beta'(x)}=\lim_{x\to 0}\frac{(A-1)\beta'(x)}{(A-1)\beta'(x)}=1 limx0α(x)β(x)α(x)β(x)=limx0(A1)β(x)(A1)β(x)=1
( ∵ lim ⁡ x → 0 α ′ β ′ = A ≠ 1 ∴ ( A − 1 ) β ′ ( x ) = O ( α ( x ) ) \because \lim_{x\to 0}\frac{\alpha'}{\beta'}=A\ne 1\therefore(A-1)\beta'(x)=O(\alpha(x)) limx0βα=A=1(A1)β(x)=O(α(x)) )
也即 α − β ∼ α ′ − β ′ \alpha-\beta\sim\alpha'-\beta' αβαβ
A = 1 A= 1 A=1 时,有 lim ⁡ x → 0 α ( x ) − β ( x ) α ′ ( x ) − β ′ ( x ) = lim ⁡ x → 0 o ( α ′ ( x ) ) + o ( β ′ ( x ) ) o ( β ′ ( x ) ) \lim_{x\to 0}\frac{\alpha(x)-\beta(x)}{\alpha'(x)-\beta'(x)}=\lim_{x\to 0}\frac{o(\alpha'(x))+o(\beta'(x))}{o(\beta'(x))} limx0α(x)β(x)α(x)β(x)=limx0o(β(x))o(α(x))+o(β(x))
这时候情况便有些微妙了,这个极限的结果确实可能等于1,但也有可能为0,有可能为无穷,是个不确定的结果,方便的等量代换结果葬送了自己,可谓有利有弊。

回首

错误选成A,大都是因为用了等量代换 l n ( 1 + 2 x ) ∼ 2 x ln(1+2x)\sim 2x ln(1+2x)2x,我们利用我们刚刚证明的结果来说明为什么不对。
l n ( 1 + 2 x ) ln(1+2x) ln(1+2x) 看成 α \alpha α 2 x 2x 2x 看成 α ′ \alpha' α ;把 x 2 x^2 x2 看成 β \beta β ( x 2 ) ′ = 2 x (x^2)'=2x (x2)=2x 看成 β ′ \beta' β。可以算得 lim ⁡ x → 0 α ′ β ′ = 1 \lim_{x\to 0}\frac{\alpha'}{\beta'}=1 limx0βα=1。那么正确做法应该怎么做呢?
作为一名狂热的泰勒展开爱好者,我的选择是展!
其实换个角度想,分母项是二次方,你这等量代换都把 l n ( 1 + 2 x ) ln(1+2x) ln(1+2x) 在原点附近的二次项都扔了,怎么可能有正确结果。这其实是一个很隐晦但又很重要的问题——避免有效信息丢失!。之前讲过的一道常微分的题也是同样的问题.

解:
∵ l n ( 1 + 2 x ) = 2 x − 2 x 2 + o ( x 2 ) \because ln(1+2x)=2x-2x^2+o(x^2) ln(1+2x)=2x2x2+o(x2)

∴ lim ⁡ x → 0 l n ( 1 + 2 x ) + x f ( x ) x 2 = lim ⁡ x → 0 2 x − 2 x 2 + o ( x 2 ) + x f ( x ) x 2 = 1 \therefore \lim_{x\to 0}\frac{ln(1+2x)+xf(x)}{x^2}=\lim_{x\to 0}\frac{2x-2x^2+o(x^2)+xf(x)}{x^2}=1 limx0x2ln(1+2x)+xf(x)=limx0x22x2x2+o(x2)+xf(x)=1

∴ lim ⁡ x → 0 2 + f ( x ) + o ( x ) x = 3 \therefore \lim_{x\to 0}\frac{2+f(x)+o(x)}{x}=3 limx0x2+f(x)+o(x)=3 (把2移到右边并上下约分x)

∵ lim ⁡ x → 0 o ( x ) x = 0 \because \lim_{x\to 0}\frac{o(x)}{x}=0 limx0xo(x)=0

∴ lim ⁡ x → 0 2 + f ( x ) x = 3 \therefore \lim_{x\to 0}\frac{2+f(x)}{x}=3 limx0x2+f(x)=3

痛斥无穷小

这里再简单举一个例子,求解
lim ⁡ x → 0 ( 1 − cos ⁡ x ) [ x − ln ⁡ ( 1 + tan ⁡ x ) ] ( x − sin ⁡ x ) ln ⁡ ( 1 + x ) \lim_{x\to 0}\frac{(1-\cos x)[x-\ln(1+\tan x)]}{(x-\sin x)\ln(1+x)} x0lim(xsinx)ln(1+x)(1cosx)[xln(1+tanx)]
解:等价无穷小写法
1 − cos ⁡ x ∼ 1 2 x 2 x − sin ⁡ x ∼ 1 6 x 3 ln ⁡ ( 1 + x ) ∼ x \begin{aligned} &1-\cos x\sim\frac12 x^2\\ &x-\sin x\sim\frac16 x^3\\ &\ln(1+x)\sim x \end{aligned} 1cosx21x2xsinx61x3ln(1+x)x
问题在于,如果你这么处理
ln ⁡ ( 1 + tan ⁡ x ) ∼ tan ⁡ x   ,    x − ln ⁡ ( 1 + tan ⁡ x ) ∼ − 1 3 x 3 \ln(1+\tan x)\sim\tan x~,~~ x-\ln(1+\tan x)\sim-\frac13x^3 ln(1+tanx)tanx ,  xln(1+tanx)31x3
那么会得到最终结果为0的错误答案,因为上面的做法会把二次项给抹除掉,说到这里,也许有些人会说我的等价无穷小用得不对,嘿,你等价无穷小何时有严谨的做法和限制了?回归正题,使用Taylor,得到
ln ⁡ ( 1 + tan ⁡ x ) = tan ⁡ x − 1 2 tan ⁡ 2 x + o ( tan ⁡ 2 x ) = x + x 3 3 + o ( x 3 ) − 1 2 ( x + x 3 3 + o ( x 3 ) ) 2 + o ( tan ⁡ 2 x ) = x − 1 2 x 2 + o ( x 2 ) x − ln ⁡ ( 1 + tan ⁡ x ) ∼ 1 2 x 2 \begin{aligned} \ln(1+\tan x)&=\tan x-\frac12\tan^2x+o(\tan^2x)\\ &=x+\frac{x^3}{3}+o(x^3)-\frac12(x+\frac{x^3}{3}+o(x^3))^2+o(\tan^2x)\\ &=x-\frac12x^2+o(x^2) \end{aligned} \\ x-\ln(1+\tan x)\sim\frac12x^2 ln(1+tanx)=tanx21tan2x+o(tan2x)=x+3x3+o(x3)21(x+3x3+o(x3))2+o(tan2x)=x21x2+o(x2)xln(1+tanx)21x2

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值