提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
多元线性回归参数估计课题,方法
最小二乘法
极大似然估计
这两个方法差不多所以放在一个文章里
本文更多记录代码,原理找其他文章
matlab语言
一、多元线性回归
模型:y=Xβ+ε ,其中Xβ=β0+β1x1+…+βpxp,是已知量 ,ε~N(0,σ^2) (正态分布)
yi=xiβ+εi
y为n1矩阵,x为np矩阵,β为p*1矩阵
###多元就是多个x,求x前面的系数,和常数项
我记得这篇文章我好像有用模拟,多次实验得到的数据均值来对比###
得到的模拟值(msigma,mbeta)求平均值(mean)均值误差(Bias)标准差(SD),95%分位数和5%分位数
二、最小二乘法,极大似然估计
文中重点只讲极大似然估计
理论过程:
0.确定所要求的未知参数 β,σ^2
1.根据已知模型求出y所服从的分布
2.根据所服从的分布,求出待求模型y的联合概率密度函数 L(θ) (pdf)
3.对L求对数,得到lnL