多元线性回归,参数估计,模拟,最小二乘法,极大似然估计,matlab

本文探讨多元线性回归的参数估计,通过最小二乘法和极大似然估计进行分析。主要内容包括模型介绍、最小二乘法和极大似然估计的理论推导,以及在matlab中的实现步骤。文章侧重于代码实践,旨在通过模拟和实际数据计算估计参数。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

多元线性回归参数估计课题,方法
最小二乘法
极大似然估计
这两个方法差不多所以放在一个文章里
本文更多记录代码,原理找其他文章
matlab语言


一、多元线性回归

模型:y=Xβ+ε ,其中Xβ=β0+β1x1+…+βpxp,是已知量 ,ε~N(0,σ^2) (正态分布)

yi=xiβ+εi

y为n1矩阵,x为np矩阵,β为p*1矩阵

###多元就是多个x,求x前面的系数,和常数项
我记得这篇文章我好像有用模拟,多次实验得到的数据均值来对比###

得到的模拟值(msigma,mbeta)求平均值(mean)均值误差(Bias)标准差(SD),95%分位数和5%分位数

二、最小二乘法,极大似然估计

文中重点只讲极大似然估计

理论过程:
0.确定所要求的未知参数 β,σ^2
1.根据已知模型求出y所服从的分布
2.根据所服从的分布,求出待求模型y的联合概率密度函数 L(θ) (pdf)
3.对L求对数,得到lnL

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值