数据分析,主成分分析例题

已知协方差矩阵求X的各主成分以及主成分的贡献率
在这里插入图片描述

主成分分析

原理:找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,且彼此之间互不相关

统计方法:主成分分析(主分量分析)

主成分分析步骤

1.根据已知协方差矩阵,求出相应的特征值(特征根)

令|kE-A|=0(其中k是特征值),求出的k就是所需要的特征值

2.求出对应特征值的特征向量

解方程|kE-A|X=0,求X的所有情况(参考高等代数的第三章解线性方程组)
求出基本解系,设定自由未知量的值
(X是向量)

3.对所求出来的特征向量进行正交化

正交化:使得两个向量线性无关
(详细方法下面解题过程中有)

4.对于正交化后的向量进行单位化

使正交化后的向量进行单位化

5.选择重要的主成分并写出主成分表达式

对应的单位正交化后的向量对应系数

6.计算主成分得分

7.依据主成分得分的数据进行进一步的统计分析

下面是例题的求解过程
在这里插入图片描述

总结

矩阵计算的基础,行列式的基本运算,求特征值和特征根,掌握这三点,基本这个题就可以做了,考试的时候计算不要占用太多的时间

主成分分析是一种降维算法,它能将多个指标转换为少数几个主成分,这些主成分是原始变量的线性组合,且彼此之间互不相关,能反映出原始数据的大部分信息。主成分分析的目的是简化数据,减少变量的数量,同时保留尽可能多的信息。在进行主成分分析时,首先需要计算关键变量,然后写出主成分并进行简要分析。 举个例子,假设我们有一组数据,包括身高、体重、腰围、臂长等指标。我们可以进行主成分分析来降低变量的数量。根据引用\[3\]中的例子,我们可以得到三个主成分:大小成分、形状成分和臂长成分。第一主成分F1对所有原始变量都有近似相等的正载荷,可以称之为大小成分。第二主成分F2在某些变量上有正载荷,在其他变量上有负载荷,可以称之为形状成分。第三主成分F3在某些变量上有大的正载荷,在其他变量上有大的负载荷,可以称之为臂长成分。根据实际情况和需求,我们可以选择只取前两个主成分进行分析,因为第三成分的贡献度不高且实际意义不太重要。 总之,主成分分析是一种有效的数据降维方法,可以将多个指标转化为几个综合指标,从而简化问题、提高分析效率。通过选择合适的主成分,我们可以更好地理解数据的结构和规律。 #### 引用[.reference_title] - *1* *3* [主成分分析法](https://blog.csdn.net/weixin_51711289/article/details/124644361)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [数据分析案例-基于PCA主成分分析法对葡萄酒数据进行分析](https://blog.csdn.net/m0_64336780/article/details/128766855)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值