i912900k和i712700kf差距多大

本文比较了i7 12700KF和i9 12900K这两款Intel处理器的规格。i7 12700KF拥有8核20线程,基础频率2.7GHz,最高睿频5.0GHz,25MB L3缓存,支持DDR5-3200内存。而i9 12900K则有16核,基础频率3.2GHz,最大睿频5.2GHz,30MB L3缓存。两者TDP均为125W。选择哪一款取决于你的具体需求和预算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

i7 12700kf采用英特尔7nm工艺制造依旧是8核心20线程,基础主频为2.7GHz,睿频为5.0GHz,25MB L3缓存,内存支持双通道DDR5-3200。 TDP功耗 125W
组装电脑选i7 12700kf还是i912900k怎么搭配更合适这些点很重要 http://www.adiannao.cn/du
在这里插入图片描述
i9-12900K 处理器默频 3.2GHz,最大睿频 5.2GHz,由 16 颗核心构成,支持英特尔 LGA1700 接口。三级缓存 30MB,TDP 为 125W,传输带宽为 64-Bit,搭载自家 UHD 770 核心显卡。

import cv2 import numpy as np import matplotlib.pyplot as plt width, height = 288, 512 max_matches = 60 img_i = cv2.imread('f1_1.png', cv2.IMREAD_COLOR) img_j = cv2.imread('kf_1.png', cv2.IMREAD_COLOR) idx_i2j = np.loadtxt('idx_i2j.txt', dtype=np.float32) input_file = "valid_match_j.txt" output_file = "./logs/valid_matchs_j.txt" with open(input_file, "r") as f_in, open(output_file, "w") as f_out: for line in f_in: value = line.strip() if value == "True": f_out.write("1\n") elif value == "False": f_out.write("0\n") valid = np.loadtxt('./logs/valid_matchs_j.txt', dtype=bool) def index_to_coord(index): x = int(index) % width y = int(index) // width return (x, y) valid_indices = np.where(valid)[0] np.random.shuffle(valid_indices) selected = valid_indices[:min(max_matches, len(valid_indices))] kp1, kp2, matches = [], [], [] for i, k in enumerate(selected): x_i, y_i = index_to_coord(k) x_j, y_j = index_to_coord(idx_i2j[k]) kp1.append(cv2.KeyPoint(x_i, y_i, 1)) kp2.append(cv2.KeyPoint(x_j, y_j, 1)) matches.append(cv2.DMatch(i, i, 0)) out_img = np.empty((max(height, height), width*2, 3), dtype=np.uint8) cv2.drawMatches(img_i, kp1, img_j, kp2, matches, outImg=out_img, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS, matchColor=(0, 255, 0), singlePointColor=(255, 0, 0)) plt.figure(figsize=(20, 10)) plt.imshow(cv2.cvtColor(out_img, cv2.COLOR_BGR2RGB)) plt.axis('off') plt.title(f'({len(selected)}/{len(valid_indices)} valid matches)') save_path = './logs/mast3r_match.png' plt.savefig(save_path, bbox_inches='tight', dpi=150, pad_inches=0.1) plt.show() 分析以上代码,能否帮助在以上代码的基础上实现一个新的计算匹配对中存在的误匹配数量模块?误匹配的计算规则如下:首先对于每个匹配对,计算它们像素空间上的欧几里德距离,再统计所有匹配对欧几里德距离之来计算它们的平均值标准差,之后对于每个匹配对,如果它们像素空间上的欧几里德距离与距离平均值的差距于两倍标准差,则将它们视为可能的误匹配点。计算出误匹配对后,用print函数输出误匹配对数量。
最新发布
04-02
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值