PyQt5 图表 QtChart

本文介绍了如何安装和使用PyQt5及其PyQtChart模块来创建数据可视化图表。通过一个实例展示了如何生成一个展示四周每日气温变化的柱状图,并实现双击图表打印对应数据的功能。

PyQt5 图表 QtChart

安装 PyQt5 与 PyQtChart

安装 PyQt5 与 PyQtChart,PyQtChart 是主要用来呈现数据可视化的包。安装完后记得检验是否安装成功,以及确认版本,以确保安装是否完成。

# 安装命令
pip3 install PyQt5 PyQtChart
# 检视命令
pip3 show PyQt5 PyQtChart

使用 PyQtChart

PyQt5 可以利用 QtChart 来产生如先前 Matplotlib 或是 Pandas 包的图表效果,重要的是使用者可以完全客制化而且还可以与使用者产生互动。以下使用随机生成的数据生成代码,但在产生图片时,使用 PyQt5,并使用信号槽的方式,让使用者双击图示,打印出双击的数据内容。

import sys
import numpy as np
import pandas as pd

from PyQt5.QtCore import Qt
from PyQt5.QtGui import QPainter
from PyQt5.QtWidgets import QApplication, QMainWindow
from PyQt5.QtChart import (QChart, QChartView, QBarSeries, QBarSet, QBarCategoryAxis, QValueAxis)

class MainWindow(QMainWindow):
    def __init__(self):
        super().__init__()
        self.resize(800, 600)
# 随机找出 4 笔 7 天的温度变化
        df = pd.DataFrame(np.random.randint(20, high = 35, size=(7,4)),columns=list('abcd'),index=list('1234567'))
        print(df)
# 画出4 周的温度变化折线图
        cols = list(df.columns)
        #valuesArray = list(df.values)
        series = QBarSeries()
        for i in range(len(cols)):
            setTemp = QBarSet(cols[i])
            setTemp.append(list(df.iloc[:,i]))
            series.append(setTemp)

        chart = QChart()
        chart.addSeries(series)
        chart.setTitle("Weather (day of the week)")

        chart.setAnimationOptions(QChart.SeriesAnimations)

        daysofweek = [f"day of week-{i}" for i in range(7)]

        axisY = QValueAxis()
        axisY.applyNiceNumbers()
        chart.addAxis(axisY, Qt.AlignLeft)
        series.attachAxis(axisY)

        self.axis_x = QBarCategoryAxis()
        self.axis_x.append(daysofweek)
        chart.addAxis(self.axis_x, Qt.AlignBottom)
        series.attachAxis(self.axis_x)

        chart.legend().setVisible(True)
        chart.legend().setAlignment(Qt.AlignBottom)

        chartView = QChartView(chart)
        chartView.setRenderHint(QPainter.Antialiasing)
        self.setCentralWidget(chartView)

        series.doubleClicked.connect(self.bar_double_clicked)

    def bar_double_clicked(self, index, barset):
        print(barset.label(), barset.at(index), self.axis_x.categories()[index])
    
if __name__ == "__main__":
    app = QApplication(sys.argv)
    window = MainWindow()
    window.show()
    sys.exit(app.exec())

下图显示 QtChart 所绘出的四周的每天气温柱状图,当双击图表时,会在下方命令控制台中打印中数据内容。

利用 PyQt5 生成图表,双击图表会打出数据内容
利用 PyQt5 生成图表,双击图表会打出数据内容

参考文献

  • Qt Charts,https://doc.qt.io/qt-5/qtcharts-index.html
  • PyQt5 Charts, https://geekscoders.com/courses/pyqt5-tutorials/lessons/pyqt5-tutorial-working-with-pyqtchart/
  • How to get the Value from Bar Chart in PyqtChart, https://stackoverflow.com/questions/63332965/
### 安装环境准备 为了在树莓派上成功安装PyQt和QChart库,确保硬件为树莓派4B并已烧录Raspberry Pi OS系统[^2]。 ### 更新系统包列表 更新现有系统的软件包列表以获取最新的版本信息: ```bash sudo apt-get update ``` ### 安装依赖项 安装必要的编译工具和其他依赖项来支持Python开发环境: ```bash sudo apt-get install python3-pip build-essential libgl1-mesa-dev ``` ### 安装 PyQt5pyqtchart 通过pip安装最新版的PyQt5及其图表组件。这一步骤会自动处理大部分依赖关系: ```bash pip3 install PyQt5 pyqtchart ``` 如果遇到权限错误,则可以尝试加上`--user`参数或使用`sudo`命令前缀执行上述指令。 对于某些特定情况下可能还需要额外配置环境变量PATH,使新安装的内容生效。 ### 验证安装 创建简单的测试脚本来验证安装是否成功完成。下面是一个基本的例子用于展示如何加载PyQt5窗口并显示一个空白图表区域: ```python import sys from PyQt5.QtWidgets import QApplication, QMainWindow from PyQt5.QtCharts import QChart, QChartView, QLineSeries app = QApplication(sys.argv) window = QMainWindow() chart = QChart() series = QLineSeries() series.append(0, 6) series.append(2, 4) series.append(3, 8) series.append(7, 4) series.append(10, 5) chart.addSeries(series) chart.createDefaultAxes() view = QChartView(chart) window.setCentralWidget(view) window.show() sys.exit(app.exec_()) ``` 运行此程序应该可以看到带有简单折线图的小型图形化界面窗口弹出。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值