AVL树(C++)

1. 键值对

键值对是一种常见的数据结构,用于表示具有一一对应关系的信息。每个键值对包含两个部分:键(key)和值(value)。比如:现在要建立一个英汉互译的字典,那该字典中必然有英文单词与其对应的中文含义,而且,英文单词与其中文含义是一一对应的关系,即通过该应该单词,在词典中就可以找到与其对应的中文含义。
SGI-STL中关于键值对的定义:

template <class T1, class T2>
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(): first(T1()), second(T2())
{}
pair(const T1& a, const T2& b): first(a), second(b)
{}
};

2. AVL树

2.1 AVL树的概念

上篇文章我们实现了搜索二叉树,而搜索二叉树虽然可以缩短查找的效率,但时如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:
当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。
这样,AVL树可以避免二叉搜索树退化为链表,确保查找、插入和删除操作的时间复杂度始终保持在
O(logn) 的范围内。将这种自平衡的二叉搜索树命名为AVL树

AVL树具有如下性质:

  1. 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)。
  2. 它的左右子树都是AVL树。

ps:当前节点平衡因子 = 右子树高度 - 左子树高度。
在这里插入图片描述

2.2 AVL树节点的定义

TreeNode成员的几点解释:

  1. 引入成员_bf:用于记录当前节点的平衡因子,即右子树高度减去左子树高度的值。平衡因子的作用是帮助判断树的平衡状态,当平衡因子的绝对值大于1时,表示树失衡,需要进行相应的调整操作。
  2. 引入_parent指针:指向当前节点的父节点。通过这个指针,可以在需要时访问到父节点。
  3. 节点中存储的是键值对信息。

AVL树节点的定义:

template<class K, class V>
struct TreeNode
{
	struct TreeNode* _left;//左孩子
	struct TreeNode* _right;//右孩子
	struct TreeNode* _parent;//父节点
	pair<K, V> _kv;
	int _bf;//平衡因子 balance factor
	//构造函数
	TreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(kv)
	{}
};

2.3 AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子

具体操作步骤如下:

2.3.1 按照二叉搜索树的方式插入新节点

具体操作过程参考之前写的文章,这里就不在赘述,详情参考之前写的这篇文章:搜索二叉树,这里直接给出插入新节点的具体代码。

bool insert(const pair<K, V>& kv)
{
	//按照搜索树的方式插入新节点
	//空树
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}
	//找插入位置
	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (cur->_kv.first > kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}
		else if (cur->_kv.first < kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else
		{
			return false;
		}
	}
	//插入
	cur = new Node(kv);
	if (parent->_kv.first > kv.first)
	{
		parent->_left = cur;
		cur->_parent = parent;
	}
	else
	{
		parent->_right = cur;
		cur->_parent = parent;
	}
}

2.3.2 调整节点的平衡因子

新节点cur插入后,parent的平衡因子一定需要调整,在插入之前,parent 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:

  • 如果cur插入到parent的左侧,只需给parent的平衡因子-1即可
  • 如果cur插入到parent的右侧,只需给parent的平衡因子+1即可

新节点是插入在parent的左边或者右边,如果插入以后,parent这颗树的高度变了,则需要继续往上更新,直到更新到根节点或者遇到平衡因子为-2 or 2(此时需要旋转控制平衡),否则无需往上更新,插入结束。
1. parent的平衡因子变为了0。parent的平衡因子变为了0,也就意味着parent的平衡因子之前为-1 或者 1,也就是新节点插入在parent这颗树矮的那一边。
在这里插入图片描述
2 parent的平衡因子变为了-1 或者1。parent的平衡因子变为了-1 或者1,也就意味着parent的平衡因子之前为0 ,也就是新节点的插入导致parent这颗树左子树或者右子树变高了,此时以parent为根的树的高度也增加了,需要继续向上更新。
在这里插入图片描述
3 parent的平衡因子变为了-2 或者2。parent的平衡因子变为了-2 或者2,也就意味着parent这棵树出现了不平衡,需要对其进行旋转处理。

调整节点的平衡因子的代码如下:

//更新平衡因子
while (parent)
{
	//更新父节点的平衡因子
	if (parent->_left == cur)
	{
		parent->_bf--;
	}
	else
	{
		parent->_bf++;
	}
	//检测更新后的父节点的平衡因子
	if (parent->_bf == 0)// -1 1
	{
		break;
	}
	else if (parent->_bf == 1 || parent->_bf == -1)//0
	{
		// 插入前父节点的平衡因子是0,插入后父节点的平衡因子为1 或者 -1 
		// 说明以父节点为根的二叉树的高度增加了一层,因此需要继续向上调整
		cur = parent;
		parent = parent->_parent;
	}
	else if (parent->_bf == 2 || parent->_bf == -2)
	{
		// 父节点的平衡因子为正负2,违反了AVL树的平衡性
	// 需要对以parent为根的树进行旋转处理
		if (parent->_bf == 2 && cur->_bf == 1)
		{
			//左单旋
			RotateL(parent);
		}
		else if (parent->_bf == -2 && cur->_bf == -1)
		{
			//右单旋
			RotateR(parent);
		}
		else if (parent->_bf == 2 && cur->_bf == -1)
		{
			//右左双旋
			RotateRL(parent);
		}
		else if (parent->_bf == -2 && cur->_bf == 1)
		{
			//左右双旋
			RotateLR(parent);
		}
		else
		{
			assert(false);//平衡因子出现问题了
		}
		break;
	}
	else
	{
		assert(false);//平衡因子出现问题了
	}
}

2.4 AVL树的旋转

通过上面的分析,可以发现在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。

根据节点插入位置的不同,AVL树的旋转分为四种:

2.4.1 右单旋

新节点插入较高左子树的左侧—左左:右单旋
在这里插入图片描述

上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子中),30左子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点的平衡因子即可。ps: 我们通过下面的图可以发现,整个过程只有parent和subL的平衡因子变了,都变为了0
在旋转过程中,有以下几种情况需要考虑:

  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
    如果是根节点,旋转完成后,要更新根节点
    如果是子树,可能是某个节点的左子树,也可能是右子树

下面我们来画一下抽象图再来理解一下:
在这里插入图片描述
代码如下:

void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	//旋转,subLR做parent的左子树
	//parent做subL的右子树
	parent->_left = subLR;
	if (subLR)
	{
		subLR->_parent = parent;
	}
	Node* pParent = parent->_parent;
	subL->_right = parent;
	parent->_parent = subL;
	//parent为根节点,需要将根节点更新为subR 
	if (_root == parent)
	{
		_root = subL;
		subL->_parent = nullptr;
	}
	else
	{
		//更新subR的父节点指针
		if (subL->_kv.first > pParent->_kv.first)
		{
			pParent->_right = subL;
		}
		else
		{
			pParent->_left = subL;
		}
		subL->_parent = pParent;
	}
	//更新平衡因子
	parent->_bf = subL->_bf = 0;
}

2.4.2 左单旋

新节点插入较高右子树的右侧—右右:左单旋
在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到60的右子树(注意:此处可能是右孩子中),60右
子树增加了一层,导致以30为根的二叉树不平衡,要让30平衡,只能将30右子树的高度减少一层,左子树增加一层,即将右子树往上提,这样30转下来,因为30比60小,只能将其放在60的左子树,而如果60有左子树,左子树根的值一定大于30,小于60,只能将其放在30的右子树,旋转完成后,更新节点的平衡因子即可。ps: 我们通过下面的图可以发现,整个过程只有parent和subR的平衡因子变了,都变为了0
在旋转过程中,有以下几种情况需要考虑:

  1. 60节点的左孩子可能存在,也可能不存在
  2. 30可能是根节点,也可能是子树
    如果是根节点,旋转完成后,要更新根节点
    如果是子树,可能是某个节点的左子树,也可能是右子树

下面我们来画一下抽象图再来理解一下:
在这里插入图片描述
代码如下:

void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	//旋转,subRL做parent的右子树
	//parent做subR的左子树
	parent->_right = subRL;
	if (subRL)
	{
		subRL->_parent = parent;
	}
	Node* pParent = parent->_parent;
	subR->_left = parent;
	parent->_parent = subR;
	//parent为根节点,需要将根节点更新为subR 
	if (parent == _root)
	{
		_root = subR;
		subR->_parent = nullptr;
	}
	else
	{
		//更新subR的父节点指针
		if (subR->_kv.first > pParent->_kv.first)
		{
			pParent->_right = subR;
		}
		else
		{
			pParent->_left = subR;
		}
		subR->_parent = pParent;
	}
	//更新平衡因子
	parent->_bf = subR->_bf = 0;
}

2.4.3 左右双旋

新节点插入较高左子树的右侧—左右双旋:先左单旋再右单旋
在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到30的右子树(注意:此处可能是右孩子中),30右子树增加了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子树增加一层,即将右子树往上提。我们发现通过单旋无法让其保持平衡,因此需要进行双旋。旋转完成后,更新节点的平衡因子即可。ps: 我们通过下面的图可以发现,整个过程parent、subL以及subLR的平衡因子变了。当40为新增节点时,双旋后parent、subL以及subLR的平衡因子都变为了0;新节点插入到40的右子树时,双旋后parent和subLR的平衡因子都变为了0,而subL的平衡因子变为了-1;新节点插入到40的左子树时,双旋后subL和subLR的平衡因子都变为了0,而parent的平衡因子变为了1
下面我们来画一下抽象图再来理解一下:
在这里插入图片描述

代码如下:

void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf;
	//先对subL进行左单旋
	RotateL(subL);
	//再对parent进行左单旋
	RotateR(parent);
	//更新平衡因子
	if (bf == 0)
	{
		subL->_bf = subLR->_bf = parent->_bf = 0;
	}
	else if (bf == 1)
	{
		parent->_bf = subLR->_bf = 0;
		subL->_bf = -1;
	}
	else
	{
		subLR->_bf = subL->_bf = 0;
		parent->_bf = 1;
	}
}

2.4.4 右左双旋

新节点插入较高右子树的左侧—右左:先右单旋再左单旋
在这里插入图片描述
上图在插入前,AVL树是平衡的,新节点插入到60的左子树(注意:此处可能是左孩子中),60的左子树增加了一层,导致以30为根的二叉树不平衡,要让30平衡,只能将30右子树的高度减少一层,左子树增加一层,即将左子树往上提。我们发现通过单旋无法让其保持平衡,因此需要进行双旋。旋转完成后,更新节点的平衡因子即可。ps: 我们通过下面的图可以发现,整个过程parent、subL以及subLR的平衡因子变了。当40为新增节点时,双旋后parent、subR以及subRL的平衡因子都变为了0;新节点插入到40的右子树时,双旋后subRL和subR的平衡因子都变为了0,而subL的平衡因子变为了-1;新节点插入到40的左子树时,双旋后parent和subRL的平衡因子都变为了0,而subR的平衡因子变为了1
下面我们来画一下抽象图再来理解一下:
在这里插入图片描述
代码如下:

void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;
	RotateR(subR);
	RotateL(parent);
	//更新平衡因子
	if (bf == 0)
	{
		subR->_bf = subRL->_bf = parent->_bf = 0;
	}
	else if (bf == 1)
	{
		subR->_bf = subRL->_bf = 0;
		parent->_bf = -1;
	}
	else
	{
		parent->_bf = subRL->_bf = 0;
		subR->_bf = 1;
	}
}

总结:假如以parent为根的子树不平衡,即parent的平衡因子为2或者-2,分以下情况考虑:
1. parent的平衡因子为2,说明parent的右子树高,设parent的右子树的根为subR
当subR的平衡因子为1时,执行左单旋
当subR的平衡因子为-1时,执行右左双旋
2. parent的平衡因子为-2,说明pParent的左子树高,设parent的左子树的根为subL
当subL的平衡因子为-1是,执行右单旋
当subL的平衡因子为1时,执行左右双旋
旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。

3. AVL树的删除

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不
错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
具体实现可参考《算法导论》或《数据结构-用面向对象方法与C++描述》殷人昆版。

4. AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
    如果中序遍历可得到一个有序的序列,就说明为二叉搜索树。

代码如下:

void _InOrder(Node* root)
{
	if (!root) return;
	_InOrder(root->_left);
	cout << root->_kv.first << endl;
	_InOrder(root->_right);
}
void InOrder()
{
	_InOrder(_root);
	cout << endl;
}
  1. 验证其为平衡树
    每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
    节点的平衡因子是否计算正确。

代码如下:

int Height(Node* root)
{
	if (!root) return 0;
	int leftHeight = Height(root->_left);
	int rightHeight = Height(root->_right);
	return 1 + max(leftHeight, rightHeight);
}
bool _IsBalanceTree(Node* root)
{
	if (!root) return true;
	int leftHeight = Height(root->_left);
	int rightHeight = Height(root->_right);
	if (rightHeight - leftHeight != root->_bf)
	{
		cout << root->_kv.first << " : 的平衡因子异常" << root->_bf << endl;
	}
	return abs(rightHeight - leftHeight) < 2
		&& _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
}
bool IsBalanceTree()
{
	return _IsBalanceTree(_root);
}

验证用例:
常规场景1 :{16, 3, 7, 11, 9, 26, 18, 14, 15}。
在这里插入图片描述
特殊场景2:{4, 2, 6, 1, 3, 5, 15, 7, 16, 14}。
在这里插入图片描述

4. 源码

#pragma once
#include <iostream>
#include <assert.h>

using namespace std;
template<class K, class V>
struct TreeNode
{
	struct TreeNode* _left;
	struct TreeNode* _right;
	struct TreeNode* _parent;
	pair<K, V> _kv;
	int _bf;//平衡因子 balance factor

	TreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		,_right(nullptr)
		,_parent(nullptr)
		,_bf(0)
		,_kv(kv)
	{}
};

template<class K, class V>
class AVLTree
{
	typedef struct TreeNode<K, V> Node;
public:
	bool insert(const pair<K, V>& kv)
	{
		//空树
		if (_root == nullptr)
		{
			_root = new Node(kv);
			return true;
		}
		//找插入位置
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else
			{
				return false;
			}
		}
		//插入
		cur = new Node(kv);
		if (parent->_kv.first > kv.first)
		{
			parent->_left = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		//更新平衡因子
		while (parent)
		{
			//更新父节点的平衡因子
			if (parent->_left == cur)
			{
				parent->_bf--;
			}
			else
			{
				parent->_bf++;
			}
			//检测更新后的父节点的平衡因子
			if (parent->_bf == 0)// -1 1
			{
				break;
			}
			else if (parent->_bf == 1 || parent->_bf == -1)//0
			{
				// 插入前父节点的平衡因子是0,插入后父节点的平衡因子为1 或者 -1 
				// 说明以父节点为根的二叉树的高度增加了一层,因此需要继续向上调整
				cur = parent;
				parent = parent->_parent;
			}
			else if (parent->_bf == 2 || parent->_bf == -2)
			{
				// 父节点的平衡因子为正负2,违反了AVL树的平衡性
				// 需要对以parent为根的树进行旋转处理
				if (parent->_bf == 2 && cur->_bf == 1)
				{
					//左单旋
					RotateL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == -1)
				{
					//右单旋
					RotateR(parent);
				}
				else if (parent->_bf == 2 && cur->_bf == -1)
				{
					//右左双旋
					RotateRL(parent);
				}
				else if (parent->_bf == -2 && cur->_bf == 1)
				{
					//左右双旋
					RotateLR(parent);
				}
				else
				{
					assert(false);//平衡因子出现问题了
				}
				break;
			}
			else
			{
				assert(false);//平衡因子出现问题了
			}
		}
		return true;
	}
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	bool IsBalanceTree()
	{
		return _IsBalanceTree(_root);
	}
private:
	int Height(Node* root)
	{
		if (!root) return 0;
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		return 1 + max(leftHeight, rightHeight);
	}
	bool _IsBalanceTree(Node* root)
	{
		if (!root) return true;
		int leftHeight = Height(root->_left);
		int rightHeight = Height(root->_right);
		if (rightHeight - leftHeight != root->_bf)
		{
			cout << root->_kv.first << " : 的平衡因子异常" << root->_bf << endl;
		}
		return abs(rightHeight - leftHeight) < 2
			&& _IsBalanceTree(root->_left) && _IsBalanceTree(root->_right);
	}
	void _InOrder(Node* root)
	{
		if (!root) return;
		_InOrder(root->_left);
		cout << root->_kv.first << endl;
		_InOrder(root->_right);
	}
	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		//旋转,sub的右子树做parent的左子树
		//parent做subL的右子树
		parent->_right = subRL;
		if (subRL)
		{
			subRL->_parent = parent;
		}
		Node* pParent = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;
		//parent为根节点,需要将根节点更新为subR 
		if (parent == _root)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			//更新subR的父节点指针
			if (subR->_kv.first > pParent->_kv.first)
			{
				pParent->_right = subR;
			}
			else
			{
				pParent->_left = subR;
			}
			subR->_parent = pParent;
		}
		//更新平衡因子
		parent->_bf = subR->_bf = 0;
	}
	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}
		Node* pParent = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (subL->_kv.first > pParent->_kv.first)
			{
				pParent->_right = subL;
			}
			else
			{
				pParent->_left = subL;
			}
			subL->_parent = pParent;
		}
		parent->_bf = subL->_bf = 0;
	}
	void RotateRL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;
		int bf = subRL->_bf;
		RotateR(subR);
		RotateL(parent);
		//更新平衡因子
		if (bf == 0)
		{
			subR->_bf = subRL->_bf = parent->_bf = 0;
		}
		else if (bf == 1)
		{
			subR->_bf = subRL->_bf = 0;
			parent->_bf = -1;
		}
		else
		{
			parent->_bf = subRL->_bf = 0;
			subR->_bf = 1;
		}
	}
	void RotateLR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;
		int bf = subLR->_bf;
		//先对subL进行左单旋
		RotateL(subL);
		//再对parent进行左单旋
		RotateR(parent);
		//更新平衡因子
		if (bf == 0)
		{
			subL->_bf = subLR->_bf = parent->_bf = 0;
		}
		else if (bf == 1)
		{
			parent->_bf = subLR->_bf = 0;
			subL->_bf = -1;
		}
		else
		{
			subLR->_bf = subL->_bf = 0;
			parent->_bf = 1;
		}
	}
private:
	Node* _root = nullptr;
};

#include "AVLTree.h"

int main()
{
	int nums[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
	AVLTree<int, int> avl;
	for (auto e : nums)
	{
		avl.insert(make_pair(e, e));
	}
	avl.InOrder();
	cout << avl.IsBalanceTree();
	return 0;
}

总结:
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这
样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操
作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,
有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数
据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

至此,本片文章就结束了,若本篇内容对您有所帮助,请三连点赞,关注,收藏支持下。

创作不易,白嫖不好,各位的支持和认可,就是我创作的最大动力,我们下篇文章见!

如果本篇博客有任何错误,请批评指教,不胜感激 !!!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值