论文笔记---Group-aware Label Transfer for Domain Adaptive Person Re-identification

Abstract:无监督自适应(UDA)行人重识别(ReiD)的目的是将在有标记的源域数据集上训练的模型适应于目标域数据集,而无需任何其他标记。最成功的UDA-ReID方法是将基于聚类的伪标签预测与表示学习相结合,并以交替的方式执行这两个步骤。但是,这两个步骤之间的离线交互可能会导致有噪声伪标签严重阻碍模型的性能。在本文中,提出了一种组感知的标签转移(GLT)算法,该算法使伪标签预测和表示学习的在线交互和相互促进。具体而言,标签转移算法在使用伪标签来训练数据的同时将伪标签细化为在线聚类算法。它将在线标签提炼问题视为最佳传输问题,它探索了将M个样本分配给N个伪标签的最低成本。更重要的是,我们引入了一种组感知策略,将隐式属性组id分配给样本。将在线标签精炼算法与群体感知策略相结合,可以更好地在线纠正带有噪声的伪标签,缩小目标身份的搜索空间。根据Market1501→DukeMTMC (82.0%) 和DukeMTMC→Market1501(92.2%)的实验结果,证明了GLT的有效性,并且显着缩小了行人重识别时无监督表现与有监督表现之间的差距。
1、Introduction
行人重识别(Reid)是对非重叠摄像机网络中获取的人员图像的匹配的重要任务,在自动监控等方面有着很广泛的应用。现有的方法在相同的应用场景中收集训练和测试数据时,能够得到很好的效果,但是在一些有差异的域之间,往往不能得到很好的推广。因此这个无监督自适应的行人重识别(UDA-Reid)问题是一个很重要的研究方向。
现有的UDA-ReID方法通常包括三个步骤:

  • 基于标记源域数据的特征预训练
  • 基于聚类的目标域数据伪标记预测、
  • 基于伪标记的特征表示学习

存在的问题及解决方案:

  • 第一个问题,由于源数据与目标数据之间的域差距,以及聚类算法的不完善,以至于通过聚类分配的伪标签通常包含不正确的标签。这种标签会误导特征学习,影响域自适应性能。因此,在训练时对错误样本进行在线精炼(online refining ),可以帮助模型学更鲁棒和准确的表示。
  • 第二个问题是目标域缺少身份信息,很难根据身份对人物图像进行聚类。将在线标签细化算法与组感知策略相结合可能有益于域自适应的成功。如下图所示:
    在这里插入图片描述

本文主要的贡献为:

  • 首次尝试通过UDA-ReID的标签转移方法将聚类和特征学习集成到一个统一的框架中。它可以在线精炼预测的伪标签,提高模型在目标域上的特征表示能力。
  • 提出了一种基于标签迁移的群感知特征学习策略,以改进多组伪标签优化,为提高表示学习质量提供了良好的潜在伪标签组。
  • 与最先进的方法相比,GLT框架实现了显著的性能改进。即使对于监督学习方法,此算法也显著的缩小了差距。

2、Related Work

  • Clustering-based Methods:根据聚类结果生成硬伪标签和软伪标签,然后根据伪标签对模型进行微调。这种方法被广泛使用。
    • 无监督聚类产生的伪标签噪声一直是自训练的一个障碍,这种噪声标签会误导特征学习,阻碍高性能的实现。
    • 最近,一些方法引入了两个/三个协作网络之间的相互学习,以相互利用对等网络的精细软伪标签作为监控。
  • Domain translation based methods:通过源图像对目标图像进行转换,然后,他们使用这些转换源到目标图像及其相应的地面真值身份来微调目标域模型。
    • 这种方法不使用于现实场景,因为基于Gan的方法很少用于训练,而且会引入额外的计算成本。
  • Memory Bank based methods:被广泛的应用于无监督表征学习,这有助于在一般任务中引入对比损失。
    • 我们将对比损失引入到目标实例内存库中,以使查询样本对内存库中所有样本的正对和
  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值