自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(76)
  • 收藏
  • 关注

原创 markdown语法

公式

2022-01-10 17:28:30 364

原创 Pytorch常用函数记录

查看当前学习率print(optimizer.state_dict()['param_groups'][0]['lr'])学习率调整策略# 1. 等间隔调整学习率每隔step_size将学习率调整为当前lr的gamma倍,注意是step不是epochscheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)# 2. 按照milestones中定义的step,在指定step将

2021-07-08 10:46:59 265

原创 各类综述博客

情感分析https://zhuanlan.zhihu.com/p/338504947

2021-07-05 20:26:48 98

原创 win10安装pytorch,Tensorflow库

安装anaconda :略安装pycharm:略安装pytorch3.1 CPU版本pytoch> 指定版本pytorch:pip install http://download.pytorch.org/whl/cpu/torch-1.0.0-cp36-cp36m-win_amd64.whl> 指定配套版本torchvision:pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ torchvision==0.2..

2021-07-05 11:10:38 693

原创 CNN在NLP中的应用

博客阅读笔记:A Convolutional Encoder Model for Neural Machine Transltion

2021-05-12 16:36:04 96

原创 word转pdf可能出现的空白页问题

毕业论文和中文期刊可能很多都要求奇偶页设置不同,如奇偶页的页眉分别显示论文名和“硕士毕业论文”,还有一些可能会要求封面部分(比如包括中文封面,英文封面,原创性声明等),摘要及目录部分,以及正文部分的页号显示不同等奇葩要求。这些问题有可能导致在将编辑好的word转换为pdf时出现多余的空白页情况,主要原因时这些设置将论文切分成了不同模块,比如封面模块,摘要模块和正文模块;word设计时考虑到双面打印的情况于是让不同模块内部必须是偶数页,如果不是则word会自动为你加上一个空白页,这在word中一般看不出来,

2021-04-19 11:18:13 5999

原创 常见python,pytorch,tensorflow,linux错误

RuntimeError: DataLoader worker (pid) is killed by signal: Killed.原因是机器内存不够。可通过减少dataloader的num_worker(直接设置为0让机器自己选多少个线程去加载数据)或增加虚拟内存解决。Too many open files打开了过多文件,超出系统限制,直接ulimit -n 2048设置允许打开文件数上限(炼丹文件过多可能会有这种错误),非root用户最多设置上限4096。此外,上面的命令在命令行可以直接设置,在p

2021-03-25 21:43:52 1000

原创 深度可形变卷积

一. Deformable Convolutional Networks(DCN)1. Motivation:传统卷积由于卷积核是方方正正的,因此其实是融合了上一层3 ×\times× 3区域的信息,而再堆叠到下一层也是一个道理,因此最终实现的感受野如下图a所示:这样对于分类任务没啥事,疯狂怼卷积/空洞/池化层就成,感受野保够,加上残差的话怼个50层过拟合也不会太过严重。但对目标检测,语义分割和实例分割影响很大,感受野小了盖不住前面的object,感受野大了小物体很容易被downsampling掉(

2021-03-20 15:55:58 1044

原创 一些常用脚本

一些常用代码

2021-02-13 08:24:55 941

原创 Endnote的安装和使用问题

Endnote安装目录 + Product-Support\CWYW下的Cwyw_x64.dat文件重命名为Cwyw_x64.rar,然后解压Word中:文件=>选项=>加载项=>管理=>COM加载项=>转到=>添加=>选择Endnote安装目\Product-Support\CWYW\Cwyw_x64\EndNote Cwyw.dotm=>添加即可。注意:EndNote Cwyw.dotm有的版本可能还是EndNote Cwyw.dot或EndNote.

2021-01-04 19:06:52 1607

原创 常见面试问题

分割小物体有什么经验?语义分割主要遇到的问题是低分辨率和语义信息不足等。可以融合不同层的语义信息(MLFGAN就是融合多层信息防止细微但鉴别性很强的物体在下采样时丢失,比如帽子,脸以及衣服logo等),还可以利用多尺度分辨率的上采样模块,有几种思路,一方面是构建图像金字塔但resize这种基于双线性或双曲线插值的全局语义信息不够,可以借助超分来对图像做自适应的“插值”工作,更加具有全局语义信息,比如AIN-PCSR就做了这种超分工作来提升图像分辨率,从而更适应ReID这种图像分辨率很低的任务,不过我们做的

2020-11-11 10:26:42 890

原创 算法基础知识

计算机基础机器学习基础深度学习基础分类网络基础检测基础分割基础超分基础GAN基础ReID+人脸基础

2020-09-13 21:12:31 730

原创 git常用操作

假设远程仓库为:https://github.com/用户名/仓库名.git1. 拉取拉取master分支: git clone https://github.com/用户名/仓库名.git拉取指定分支:git clone -b 分支名 https://github.com/用户名/仓库名.git拉取指定tag:git clone -b 标签名 https://github.com/用户名/仓库名.git进入仓库所在目录(clone下来的文件有.git隐藏文件记录版本操作)2. 分支操作查看已

2020-07-15 15:26:21 2307

原创 python使用matplotlib绘图相关操作

常用绘制函数# 防止linux无显示设备运行程序会出错# 远程linux且无显示设备时,除非装显示工具,否则就算不报错也无法显示图,但可以保存图import matplotlibmatplotlib.use('Agg')# 导入包import matplotlib.pyplot as pltx = list(range(5))y = [4, 5, 6, 3, 4]z = [6, 8, 9, 7, 1]choice = "plot"if choice == "plot": p

2020-07-02 14:44:58 458

原创 linux常用命令

# 列举当前目录下的文件ls# 列举当前目录下的文件的详细信息ls -l# 列举指定目录下的文件ls your_dir_name# 创建文件夹mkdir your_dir_name# 进入目录cd your_dir_name# 复制文件/文件夹(-r强制执行)cp -r source_file_dir/your_source_file target_file_dir/your_target_file# 移动文件/文件夹 mv source_file_dir/your_source_

2020-06-29 17:33:17 2760

原创 个人reid论文阅读笔记分类

1. 目标域测试集聚类,训练集不要–系列SSG *PUL **UDA *2. 使用目标域训练集但不带ID标签系列(多为ZZ)SPGAN *EANet *ECN+GCNECNHHL (CamStyle) **TJAIDL3.单域系列,不对目标域做任何处理SB **Omni *ABDNet *BDBNet *OSM+CAA *MGN *PCB *4. ...

2020-03-04 10:43:57 89

原创 anaconda虚拟环境

2023-06-16 17:47:32 627

原创 强化学习个人学习总结

强化学习Reinforce Learning,简称RL。RL是利用奖励(reward)驱动代理(agent)在获取环境(env)的状态(state/obs)后做出一些列行动(action),导致环境到达下一个状态并给出这次行动的奖励,以驱动代理进行下一次决策。1、基本概念1.1 以王者绝悟系统为例:环境:env,也就是王者峡谷系统代理:agent,可以理解为机器人本身,会观察环境根据算法做出决策(行动),来和环境交互状态:state,可以简单理解为王者峡谷的某一帧,比如这一帧有几个防御塔,防

2022-01-10 17:29:12 1064

原创 fbx-python安装

下载:官网下载:链接:百度云 提取码:gapa安装: 安装fbx20202_fbxpythonsdk_win.exe, 一路next,然后FBX Python Bindings.zip解压到C:\Program Files\Autodesk\FBX,不然会出现dll缺失问题, 然后C:\Program Files\Autodesk\FBX\FBX Python SDK\2020.2\lib\Python37_x64添加到环境变量。使用:import syssys.path.append(r"C:\

2022-01-10 17:26:44 2716 2

原创 百度AI接口使用-图像增强篇

地址:http://ai.baidu.com/这里使用python接口,需要传入的是access_token,返回是一个字典,其中image字段就是处理后的图片的base64编码。其中,access_token需要去获取,如下:获取链接:https://ai.baidu.com/ai-doc/REFERENCE/Ck3dwjhhu利用如下程序获取:需要提供client_id和client_secret两个字段。这两个字段需要去创建应用订单后才能获取。链接如下:https://ai.ba

2021-11-30 12:21:37 3184

原创 最小二乘法计算一组数据的斜率(线性回归、趋势计算)

def compute_trend(*y): """ 计算数据的趋势(线性回归求斜率,最小二乘法),https://blog.csdn.net/qq_45607873/article/details/109425736 :return: """ x = np.arange(len(y[0])) + 1 # 横轴 y = np.array(y) # 纵轴 xymean = np.mean(np.multiply(x, y), axis=1) #..

2021-07-08 17:32:03 14928

原创 Hive SQL学习笔记

常用函数常用查询with as语句left join举例详解内置函数汇总各种join

2021-07-08 11:30:33 86

原创 Distilling the Knowledge in a Neural Network

知识蒸馏:很多时候大模型效果好而小模型效果不行不一定是小模型容量不够,而可能是直接去拟合训练集太困难,因此诞生了知识蒸馏方法,主要思想是用一个大模型去学训练集,然后小模型去学大模型预测的结果,就容易多了。以前的方法怎么做的?博客简单来说是让小模型去学习大模型预测的softmax结果本文呢?不去学大模型预测的softmax结果,而是学分类层输出的结果首先是本人结合论文总结的几个观点,不一定对:(0.1,0.3,0.2,0.4)这种soft的标签,比(0,0,0,1)这种hard标签更好学一些,包.

2021-04-28 21:29:10 163

原创 Do Deep Nets Really Need to be Deep?

大模型带小模型去学,小模型也能学出小模型一样复杂的函数,一样好的性能,但参数少得多大模型DNN:输入,FC2000,FC2000,FC2000, FC183CNN模型:输入,Conv,maxpool,FC2000, FC2000, FC2000, FC183小模型(shallow)SNN:输入,FC8000,FC183输入:1845d方法:大模型预测的softmax输出直接送给小模型当GT学模型效果:SNN-8k就是结构:输入,FC8000,FC183SNN-50k就是结构:输入,.

2021-04-28 20:14:17 159

原创 Unsupervised Domain Adaptation by Backpropagation

15年的论文Motivation之前的算法都是分别在源域和目标域提取特征,然后利用精心设计的特征映射方法将两特征变换到指定空间进行域偏差学习,从而实现域适应,但这种pipline的形式不是end-to-end的,于是这篇文章将特征学习和域特征解耦合放在一起学习,整成端到端的,这样特征鉴别性和特征解耦合都能学得更好(由于是15年的论文,因此这个思想算是很先进的,之后的方法都延续了这一思想)。域特征解耦合:一张图像提取的特征可以分为两部分,一个是图像任务本身相关的特征(比如minist分类中用于10分类

2021-04-06 21:07:15 425

原创 Dual-Path Convolutional Image-Text Embeddings with Instance Loss

Motivation任务:图文互搜(NPL+CV)问题:以前的工作都依赖于rank loss进行度量,来推开异类,拉近同类;但这其实相当于是很弱的标签监督,因此学的效果不够好。而用CE损失训练怎么样呢?有个难点是该任务不像reid,图文互搜往往只有一张图像,reid虽然少但平均每类有9.6张图像,所以CE训练很好收敛;此外,这只考虑了每种模态内数据的关联,没有考虑模态间数据的关系。做法:作者则考虑直接每张图像当作一个类别,直接通过CE损失进行分类训练任务,这存在几个问题:(1) 首先是几

2021-03-26 11:31:27 1208

原创 Coordinate Attention for Efficient Mobile Network Design

Motivation轻量化网络上的注意力机制。其他注意力又什么问题?(a) SENet:GAP操作将每个spatial特征图池化到1∗11*11∗1大小,相当于整合了这个特征图上的所有信息,达到了全局感受野的目的(理论上),然后经过系列变换(通道先将后升,节省参数)后将C维的结果分别加权回原来的特征图中(每个值都是该channel上特征图提取的结果,代表了该channel特征图的重要性,乘回去表示对不同channel进行不同程度的加权)。然后是有问题的什么呢?只考虑了channel上的注意力,那

2021-03-26 11:02:28 1932 3

原创 CascadeRCNN

论文:Cascade R-CNN: Delving into High Quality Object Detection代码: https://github.com/zhaoweicai/cascade-rcnn1. Motivation两阶段目标检测的过程是:RPN提取proposal, 即第一阶段;然后检测的head对这些proposal精修,输出类别(得分)和物体boundingbox边界框,即第二阶段。而所谓一阶段目标检测就是没有RPN过程。那有多阶段可以吗?当然可以,比如CascadeRC

2021-03-22 15:14:01 601

原创 TextCNN

论文: Convolutional Neural Networks for Sentence Classification贡献:将CNN用在NLP领域任务:将sequence通过word2vector编码后输入网络提取特征,然后输出感情倾向(good or bad, etc.)做法:输入层的X1,X2,...XnX_1, X_2, ... X_nX1​,X2​,...Xn​分别是一个sequence中的n个words,每个word被编码为d维的Embedding, 即word2vector,上图中

2021-03-21 16:28:44 194

原创 GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond以及对Non-local机制的一些总结

giuhub: code做的是attention,该attention比起以往的non-local来说很light-weight (主要是和SENet那样采用了scale的策略),而且照样很有效。本文提出的attention叫**global context (GC) block—即全局的感受野。**因为轻量化,所以可以插在网络的任何位置,不像Non-local block那样用多了的话网络根...

2020-07-04 08:22:21 801

原创 ABD-Net: Attentive but Diverse Person Re-Identification阅读总结

github两点贡献:分割中Dual attention network for scene segmentation上的PAM和CAM用在reid上一种更软的正则化方式主要介绍后者(前者只是一个应用)。整个网络为:其中OW和OF即为正则化,分别指的是正则化各种层如卷积,全连接层的权重(W)和正则化输出的特征图(F)。出发点:要求不仅有attention,还要attention...

2020-01-18 17:49:16 1730

原创 A3M:Attribute-Aware Attention Model for Fine-grained Representation Learning阅读总结

code一条支路直接做ID分类(Category),其余分支做属性分类。两个attention模块,一个是即属性在Category Feature Map中找到属性对应的部分(attention)另一个是:Category特征嵌入到属性特征中去找哪些属性特征利于Category分类(Attention)。最终达到的效果是ap更近,an更远:效果(并不高):...

2020-01-18 16:54:26 1226

原创 Batch Drop Block Network for Person Re-identification and Beyond阅读总结

代码: BDBNet主要提出了一种dropout的策略,和随机擦除(REA)很类似,REA在输入图像上操作,随机选一块抹为0,但对一个batch中的bs张图像各抹各的,区域不一定相同,且大小和长宽比也不一定一样,而BDB则是:1,对特征图进行随机擦除; 2,一个batch中的bs张图像的特征图都擦除相同位置。几种dropout的对比:SpatialDropout: arXiv按照某一维度...

2020-01-18 15:28:50 567

原创 Deep Metric Learning by Online Soft Mining and Class-Aware Attention阅读总结

Deep Metric Learning by Online Soft Mining and Class-Aware Attention提出OSM和CAA,分别解决两个问题:对于anchor,以前的方法是在一个batch内找到最难的p和最容易的n,然后pull p, push n (对比损失将pull和push分开做而triplet是一起做,但都是这个过程),剩下的p和n都没要,这太浪费了,...

2020-01-15 18:49:05 1114

原创 EANet: Enhancing Alignment for Cross-Domain Person Re-identification阅读总结

EANet: Enhancing Alignment for Cross-Domain Person Re-identification阅读笔记code: github作者原文介绍:知乎做了什么?即PCB这种直接切块不行,如a中间那个直接有两块背景拿去做分类,当然不合理了(但其实PCB切的是特征图,不是原图,而原图下采样到特征图时已具有一定的感受野。因此切的块其实也还是有全局信息的)。...

2019-12-08 10:57:06 795

原创 Relation Network for Person Re-identification阅读总结

Relation Network for Person Re-identification阅读笔记What?直接PCB太暴力了,没有考虑到块与块之间的关系。于是本文提出了一种one-vs-rest relational 策略考虑了块与块之间的关系。具体如下:以p1p_1p1​为例,上图p1p_1p1​~p6p_6p6​的获取方式和PCB完全一致,后面则略有不同。这里将p2p_2p2​~p6...

2019-12-08 08:41:58 821

转载 Ranked List Loss

https://blog.csdn.net/weixin_39417323/article/details/88573985

2019-12-07 21:37:19 181

原创 Cross-view Asymmetric Metric Learning for Unsupervised Person Re-identification阅读总结

Cross-view Asymmetric Metric Learning for Unsupervised Person Re-identification(CAMEL)阅读笔记代码: CAMELMotivationreid中所谓的风格差异其实被reid的大佬们归结为是相机的视野差异,如ZZ的CamStyle系列,本文作者所在的ZWS老师组的相关论文都是这个setting。本文也是这个设置...

2019-12-07 21:31:50 963

原创 Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification阅读总结

Transferable Joint Attribute-Identity Deep Learning for Unsupervised Person Re-Identification(TJAIDL)阅读笔记这篇文章时第一次在无监督跨域reid之中引入属性的paper。最经典的属性reid的文章当然是ZL老师组的:Improving Person Re-identifification by ...

2019-12-06 14:03:31 848

原创 Unsupervised Cross-Dataset Transfer Learning for Person Re-identification阅读总结

Unsupervised Cross-Dataset Transfer Learning for Person Re-identification(UMDL)阅读笔记What?学习一些潜在属性如a中的红色上衣,b中的黑色裤子,c中的短袖,d中的牛仔为什么能这么表示?个人理解:我们用一个网络学习到的特征,例如2048d,可能其1-5维可以表示这个人有没有背书包,4-6维表示这个人穿的上衣颜...

2019-12-05 11:40:20 655

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除