Hugging Face 的免费服务详解

1. 摘要

Hugging Face 提供了一个功能全面的免费层级,同时也有针对不同需求的付费选项。免费层级,即 HF Hub,允许用户无限制地托管公共模型、数据集和应用程序,并提供用于演示的基本计算资源。对于需要更高级功能、更高限制以及企业级功能的用户,Hugging Face 提供了 Pro 和 Enterprise Hub 付费订阅层级。此外,用户还可以按需使用计算、存储和推理 API 等服务。

Hugging Face本身不直接收取本地部署模型的费用 。当你选择在自己的硬件上本地使用 Hugging Face 的工具和模型时,通常是免费的 。  

例如,使用 Hugging Face 的 Transformers 库在本地运行模型是免费的 。该库允许你下载并缓存预训练模型,然后在你的本地机器上运行它们 .  

此外,如果你使用 AutoTrain 在本地硬件上训练模型,Hugging Face 也不收取任何费用 。这使得那些希望管理自己的基础设施并且不需要云资源可扩展性的用户来说,这是一个理想的选择。

需要注意的是,虽然 Hugging Face 提供的工具和库可以免费用于本地部署,但你可能需要考虑运行这些模型所需的硬件成本,例如足够的内存和可能的 GPU 。  

2. Hugging Face 简介

Hugging Face 已经成为机器学习生态系统中领先的平台之一,它促进了模型、数据集和人工智能应用程序的协作与共享。该平台致力于通过开源和开放科学计划来推进和普及人工智能。Hugging Face 的生态系统包含多个关键组件,其中最著名的是用于自然语言处理的 Transformers 库以及用于托管和发现人工智能资源的中央 Hub。

Hugging Face 最初由法国企业家克莱门特·德朗格(法语:Clément Delangue)、朱利安·肖蒙(Julien Chaumond)和托马斯·沃尔夫(Thomas Wolf)于 2016 年在纽约创立,最初是一家开发面向青少年聊天机器人应用程序的公司。如今,它已发展成为一个综合性的人工智能开发平台。该平台拥有庞大的社区和丰富的预训练模型库,这些模型适用于文本生成、分类、翻译和问答等多种人工智能任务。Hugging Face 对开源和社区协作的高度重视表明,其免费层级不仅仅是一种营销手段,更是其普及人工智能使命的一个基本方面。平台持续强调开放科学和社区贡献,这预示着其免费层级旨在鼓励广泛的用户参与和贡献。

3. 免费层级:HF Hub

Hugging Face 的免费层级被称为 HF Hub。它提供了一系列核心功能和优势,旨在支持机器学习社区的广泛需求。

  • 无限制的公共托管: 用户可以免费托管数量不限的公共模型、数据集和应用程序。这种无限制的公共托管对于希望分享其工作并为开放人工智能领域做出贡献的研究人员和开发人员来说,是一个重要的吸引力。它消除了分享公共资源的障碍,从而吸引了一个庞大且活跃的社区。
  • 无限制的组织创建: 免费用户可以创建数量不限的组织,并且没有成员数量的限制。此功能支持围绕特定人工智能兴趣或研究领域形成协作项目和社区。
  • 访问机器学习工具和开源资源: 免费用户可以完全访问平台上最新的机器学习工具和各种开源资源。这确保了即使是免费用户也可以利用最先进的技术并参与其发展。
  • 社区支持: 免费用户可以依赖 Hugging Face 社区论坛和资源来获得支持和帮助。虽然不是专门的支持,但活跃的社区为故障排除和学习提供了宝贵的资源。
  • Spaces 的免费 CPU: 免费层级包括用于托管小型演示和应用程序的基本 CPU 资源(2 个 vCPU,16 GB 内存)和 50GB 的临时磁盘空间。这使得用户可以通过交互式 Web 应用程序展示他们的模型和数据集,而无需承担初始成本。
  • 基于 Git 的代码仓库: 免费用户可以托管基于 Git 的代码仓库,从而方便版本控制和协作开发。这使得标准软件开发实践能够集成到人工智能工作流程中,从而更易于管理和跟踪模型及代码的更改。

4. 免费层级的限制

虽然 Hugging Face 的免费层级提供了许多有价值的功能,但也存在一些限制。

  • 私有仓库存储: 免费账户的私有仓库存储限制为 100GB。此限制鼓励拥有大量专有数据或模型的用户考虑付费层级,从而使免费层级主要面向公共贡献和较小的私有项目。
  • Spaces 的计算升级: 虽然基本的 CPU 是免费的,但将 Spaces 升级到使用 GPU 或更强大的 CPU 会产生额外的按小时收费。这种按需付费模式允许用户根据其应用程序需求扩展计算资源,同时保持基本免费层级对于更简单的演示仍然可用。
  • 推理 API 使用: 免费用户每月获得的推理 API 信用额度非常有限(低于 0.10 美元),即使是适度的使用也会很快耗尽。一旦信用额度用完,免费用户将无法再发出 API 请求。这严重限制了免费用户对推理 API 的实际使用,使其仅限于非常基本的测试,从而有效地将有实际推理需求的用户推向付费选项或专用端点。
  • ZeroGPU 使用限制: 即使是 Spaces 的“免费” ZeroGPU 选项,它允许在强大的硬件上运行应用程序有限的时间,也受到速率限制(例如,每次会话 300 秒)和总体使用配额的限制。这些限制确保了对有限的 ZeroGPU 资源的公平访问,并防止滥用,这表明它适用于短时间的计算,而不是持续运行。
  • 超出限制的私有存储成本: 对于超出免费账户 100GB 私有存储限制的用户,将按每月每 TB 25 美元的价格收取额外费用。这为需要比免费层级提供的更多私有存储的用户提供了明确的成本结构,鼓励他们进行有效的存储管理或升级到付费层级。
  • 支持限制: 免费用户主要依赖社区支持,这可能无法提供与付费订阅者获得的优先支持相同级别的响应速度或专门帮助。这种分层支持模式在免费增值服务中很常见,付费用户可以获得优先支持。

5. 付费订阅层级

Hugging Face 提供两种主要的付费订阅层级:Pro Account 和 Enterprise Hub,它们各自提供了一系列增强的功能和更高的限制,以满足更高级用户的需求。

5.1 Pro Account

  • 只需每月 9 美元的订阅费,即可解锁一系列增强功能和更高的限制。
  • Pro 账户拥有显著更高的 ZeroGPU 使用配额(比免费账户多 5 倍,通过 Web 浏览器可能高达 1500 秒)以及对 ZeroGPU 资源的优先访问权。这满足了需要更多计算能力来运行更长时间 Spaces 应用程序的个人开发者或小型团队的需求。
  • Pro 账户可以访问 Spaces 的“Dev Mode”,通过 SSH 和 VS Code 集成实现更快的迭代。此功能简化了在 Spaces 上托管的更严肃项目的开发工作流程。
  • Pro 账户每月可获得 2.00 美元的信用额度,用于所有推理提供商的服务。这为需要使用推理 API 的用户提供了切实的利益。
  • Pro 订阅者可以提前体验平台上即将推出的新功能。这为 Pro 订阅者提供了竞争优势,使他们能够在这些功能普遍可用之前进行试验并加以利用。
  • Pro 用户还会获得一个“Pro badge”,以视觉方式表明他们对平台的支持。这可以作为一种认可形式,并可能在社区内赋予一定的非正式影响力。
  • Pro 账户还享有更高的 Serverless Inference API 免费层级限制。这进一步增强了 Pro 订阅者相比免费用户使用推理 API 的便利性。
  • Pro 账户的私有仓库存储容量增加到 1TB。这解决了免费层级对于拥有更庞大私有项目的用户的存储限制。
  • Pro 用户可以在平台上创建社交帖子和社区博客。这为 Pro 用户提供了更多参与和贡献 Hugging Face 社区的途径。
  • Pro 账户可以访问私有数据集的 Dataset Viewer。这为管理和探索私有数据集提供了增强的工具。

5.2 Enterprise Hub

  • Enterprise Hub 专为需求更高的组织和团队设计,起价为每用户每月 20 美元。
  • 它提供企业级安全功能,包括单点登录 (SSO) 和 SAML 支持。这对于需要将 Hugging Face 与其现有身份管理系统集成的较大组织至关重要。
  • Enterprise Hub 允许用户通过存储区域选择数据位置,以实现合规性和延迟优化。此功能对于具有特定数据驻留要求的组织非常重要。
  • 它提供详细的审计日志,用于跟踪操作并确保责任。这增强了安全性,并允许监控和分析平台使用情况。
  • Enterprise Hub 通过资源组实现细粒度的访问控制,用于管理权限和协作。这使得组织能够精确控制谁可以访问和修改不同的资源。
  • 它提供集中的令牌控制和审批机制,以增强安全性。这有助于管理整个组织的 API 密钥和访问凭据。
  • 与 Pro 账户类似,Enterprise Hub 也包含私有数据集的 Dataset Viewer。
  • Enterprise Hub 为 Spaces 提供超出免费和 Pro 层级的高级计算选项。这满足了需要更强大和专用资源来运行其应用程序的组织的需求。
  • Enterprise Hub 为所有组织成员提供显著更大的 ZeroGPU 配额(比 Pro 多 5 倍)。这有助于需要大量临时计算资源的协作项目。
  • Enterprise Hub 允许组织在其自身的基础设施上部署推理端点,以实现最大的控制和安全性。对于具有严格安全或合规性要求的组织来说,这是一个关键特性。
  • Enterprise Hub 提供包含年度承诺的托管账单,以简化采购和预算。这简化了大型组织的财务方面。
  • Enterprise Hub 提供优先支持,保证响应时间并提供专门的帮助。这确保了企业用户在需要时能够获得及时和专业的帮助。
  • Enterprise Hub 订阅包含每个席位 1TB 的私有存储空间。这种慷慨的存储配额满足了企业团队的大数据需求。

以下表格总结了 Hugging Face 的订阅层级的关键特性:

表 1:Hugging Face 订阅层级比较

功能

免费 (HF Hub)

Pro Account (9 美元/月)

Enterprise Hub (起价 20 美元/用户/月)

公共模型/数据集托管

无限制

无限制

无限制

私有存储限制

100GB

1TB

每个席位 1TB

ZeroGPU 配额

有限,有速率限制

比免费多 5 倍,优先访问

比 Pro 多 5 倍,所有组织成员

Spaces 开发模式

推理提供商信用额度

低于 0.10 美元/月

2.00 美元/月

包含在订阅中

单点登录 (SSO)

审计日志

优先支持

社区支持

私有数据集 Dataset Viewer

Spaces 高级计算选项

需付费

需付费

包含

在自有基础设施上部署推理端点

年度承诺托管账单

Serverless Inference API 更高免费层级

创建社交帖子/社区博客

6.按需付费服务

除了订阅层级之外,Hugging Face 还提供一系列按需付费服务,允许用户根据实际使用情况付费。

6.1 计算资源(推理端点和 Spaces):

  • 推理端点: 提供了一个可扩展且安全的解决方案,用于部署模型以进行生产推理,价格从每小时 0.032 美元起,具体取决于所选硬件和使用情况。这为具有不同推理需求的用户提供了一个灵活且经济高效的选择。
  • Spaces 硬件升级: 用户可以使用各种 CPU 和 GPU 选项升级其 Spaces 应用程序的硬件,定价详情可在定价页面上找到(例如,GPU 使用起价为每小时 0.60 美元)。这使得用户可以根据其托管应用程序的具体要求定制计算资源。

6.2 存储:

对于超出其层级包含的私有存储限制(免费层级为 100GB,Enterprise 为每个席位 1TB)的用户,可以按需付费获得额外的存储空间,价格为每月每 TB 25 美元。这确保了用户只需为超出慷慨免费配额的实际使用的存储付费。

6.3 推理 API:

除了 Pro 和 Enterprise 用户包含的每月信用额度(2.00 美元)外,推理 API 的额外使用将根据每个请求的计算时间和底层硬件成本进行计费。免费用户一旦用完非常有限的信用额度就无法再使用该 API。这种按请求付费的模式允许用户根据需要扩展其 API 使用量,成本直接与消耗量挂钩。

Hugging Face 建议对于繁重的生产工作负载,应使用专用的推理端点或探索推理提供商,因为免费和 Pro 层级的推理 API 存在速率限制。此指南帮助用户为其特定的 API 使用需求选择最合适且可扩展的解决方案。

7. 结论

总而言之,Hugging Face 提供了一个强大的免费层级,该层级适用于主要使用公共资源和基本应用程序演示的个人和小型团队。对于需要高级功能、更高限制、企业级功能和专门支持的用户和组织,付费的 Pro 和 Enterprise Hub 层级提供了有价值的升级。此外,按需付费服务为需要额外计算、存储或推理 API 功能的用户提供了灵活性。潜在用户应仔细评估其具体需求和使用模式,以确定利用 Hugging Face 平台的最合适且最具成本效益的方式。

### 配置服务器连接 Hugging Face 的方法 #### 使用 Token 进行身份验证 为了安全访问 Hugging Face 上托管的内容,建议先通过 `huggingface-cli` 工具完成登录操作。这一步骤对于私有仓库尤其重要。 ```bash huggingface-cli login ``` 执行上述命令后,系统将会提示输入从 Hugging Face 官网获得的 Access Tokens 。一旦成功认证,可以通过下面这条指令确认身份: ```bash huggingface-cli whoami ``` 当显示对应的用户名时即表示登录过程顺利完成[^4]。 #### 设置镜像站点加速下载速度 考虑到网络状况可能影响资源获取效率,在中国地区推荐采用指定镜像站的方式优化体验。具体做法是在终端环境中设定特定环境变量指向备用源地址。 仅需在当前会话内应用此更改可执行如下命令: ```bash export HF_ENDPOINT="https://hf-mirror.com" ``` 要检验该变动是否生效可以借助简单的回显测试: ```bash echo $HF_ENDPOINT ``` 值得注意的是这种方法的效果局限于单次交互期间;若希望长久保留这些改动,则应考虑将其加入 shell 初始化脚本中,比如 `.bashrc` 或者 `.zshrc` 文件里[^5]。 #### 处理常见错误信息 遇到类似于 "OSError: We couldn't connect to 'https://huggingface.co'" 的报错通常意味着存在连通性障碍。此时除了尝试更换为更稳定的互联网连接外,还应该检查防火墙设置以及确保已按照前述指导完成了必要的配置调整[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深海科技服务

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值