DBSCAN聚类算法

DBSCAN是一种基于密度的空间聚类算法,它将高密度区域划分为簇,并能发现任意形状的聚类。该算法包括基本概念、操作流程、参数设置和属性介绍。在操作流程中,首先选择核心对象,然后通过密度可达性连接点。参数如eps和min_samples对聚类效果有很大影响。最后,文章提供了代码演示来展示DBSCAN的实现。
摘要由CSDN通过智能技术生成

基本概念

  基于密度的带噪声的空间聚类应用算法,它是将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并在噪声的空间数据集中发现任意形状的聚类。
在这里插入图片描述

操作流程

在这里插入图片描述

  1. 在样本点钟随机选取一个点,判断这个点在周围半径为E的范围内样本点的个数
  2. 如果样本点的个数超过设定的阈值个数说明这个点位核心对象
  3. 核心对象周围所有的点重复上述1,2操作
  4. 如果在同一个半径圆内我们称为直接密度可达:A与C
  5. 通过圆相交间接连接称为密度可达:A与B
  6. 与所有点都不连接的点称为离群点:N

实现过程

在这里插入图片描述

参数&属性

class sklearn.cluster.DBSCAN(
eps=0.5,
min_samples=5,
metric=’euclidean’,
metric_params=None,
algorithm=’auto’,
leaf_size=30,
p=None, 
n_jobs=None)

参数

  • eps: DBSCAN算法参数,即我们的ϵϵ-邻域的距离阈值,和样本距离超过ϵϵ的样本点不在ϵϵ-邻域内。默认值是0.5.一般需要通过在多组值
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值