SVD奇异值分解——矩阵压缩

本文介绍了奇异值分解(SVD)的基本概念,详细阐述了SVD在数据降维、推荐算法和自然语言处理中的应用,并探讨了算法核心,包括酉矩阵和分解过程。通过实例和代码演示,展示了SVD如何实现矩阵压缩,从而减少内存消耗和提高运行效率。
摘要由CSDN通过智能技术生成

基本概念

  • SVD
    奇异值分解。将矩阵进行压缩。大幅度减少内存消耗,提高运行速度。

应用

数据降维、推荐算法、自然语言处理

算法核心

A = U ∑ V t A=U\sum V^t A=UVt

对于任意矩阵A,我们总能够将其分解位三个矩阵 U 、 ∑ 、 V t U、\sum、V^t UVt

  • U为酉矩阵
  • ∑ \sum 为对角阵
  • V t V^t Vt酉矩阵

酉矩阵

  • 满足 A T = A − 1 A^T=A^{-1} AT=A1

分解过程

将原始矩阵分解为三个矩阵

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值