斜率优化dp例题

任务安排1

题目描述

在这里插入图片描述
数据范围
1 ≤ N ≤ 5000 , 0 ≤ S ≤ 50 , 1 ≤ T i , C i ≤ 100 1≤N≤5000,0≤S≤50,1≤Ti,Ci≤100 1N50000S501Ti,Ci100



s u m c [ i ] sumc[i] sumc[i]:花费的前缀和

s u n t [ i ] sunt[i] sunt[i]:时间的前缀和

如果选择在第 i i i个任务处添加一个分组,那么在这里多出来的机器启动时间 S S S会对后面的每一个任务都造成影响,导致多出来的花费值是 S ∗ ( s u m c [ n ] − s u m c [ i ] ) S*(sumc[n] - sumc[i]) S(sumc[n]sumc[i]),为了不影响后面的dp,所以对后面的任务造成的花费直接在 i i i处加上。

定义f[i]表示前i个任务分组的最小花费。

则有 f i = m i n { f j + s u m t i ∗ ( s u m c i − s u m c j ) + S ∗ ( s u m c n − s u m c j )    ∣   0 ≤ j ≤ i − 1   } f_i=min \{ f_j + sumt_i*(sumc_i-sumc_j) + S*(sumc_n-sumc_j) \ \ | \ 0 \le j \le i-1 \ \} fi=min{fj+sumti(sumcisumcj)+S(sumcnsumcj)   0ji1 }

#include <bits/stdc++.h>
using namespace std;

const int N = 5010;

int n, s;
long long dp[N], sumt[N], sumc[N];

int main() {
    cin.tie(0);
    ios::sync_with_stdio(false);
    
    cin >> n >> s;
    for (int i = 1; i <= n; i ++) {
        cin >> sumt[i] >> sumc[i];
        sumt[i] += sumt[i - 1];
        sumc[i] += sumc[i - 1];
    }
    memset(dp, 0x3f, sizeof dp);
    dp[0] = 0;
    for (int i = 1; i <= n; i ++) {
        for (int j = 0; j < i; j ++) {
            dp[i] = min(dp[i], dp[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j]));
        }
    }
    cout << dp[n];
    
    return 0;
}

任务安排2

题意与任务安排1相同,但是数据范围有变。
数据范围: 1 ≤ N ≤ 3 × 1 e 5 , 1 ≤ T i , C i ≤ 512 , 0 ≤ S ≤ 512 1≤N≤3×1e5,1≤Ti,Ci≤512,0≤S≤512 1N3×1e51Ti,Ci5120S512


之前的做法是 O ( n 2 ) O(n^2) O(n2),但是本题 n ≤ 3 e 5 n\le3e5 n3e5,于是需要对上面的转移式子进行优化。

这里要用到的就是斜率优化dp

在求 f i f_i fi时,需要遍历每一个 f j , ( j < i ) f_j,(j\lt i) fj(j<i),我们可以把与i相关的值看成常量,将与j有关的值看成变量。

更具体的,将 f j f_j fj看成 y y y s u m c j sumc_j sumcj看成 x x x

    for (int i = 1; i <= n; i ++) {
        for (int j = 0; j < i; j ++) {
            f[i] = min(f[i], f[j] + sumt[i] * (sumc[i] - sumc[j]) + s * (sumc[n] - sumc[j]));
        }
    }

f i = f j − ( s u m t i + S ) ∗ s u m c j + s u m t i ∗ s u m c i + S ∗ s u m c n f_i=f_j - (sumt_i + S) * sumc_j + sumt_i * sumc_i + S * sumc_n fi=fj(sumti+S)sumcj+sumtisumci+Ssumcn

左右移项得到 f j = ( s u m t i + S ) ∗ s u m c j + f i − s u m t i ∗ s u m c i − S ∗ s u m c n f_j = (sumt_i+S) *sumc_j + f_i - sumt_i * sumc_i - S * sumc_n fj=(sumti+S)sumcj+fisumtisumciSsumcn

可以将其看成直线表达式: y = k x + b y = kx + b y=kx+b的形式。其中斜率 k k k是一个定值。

这个直线表达式上的点 ( x , y ) (x, y) (x,y)取值可以是: ( s u m c 0 , f 0 ) , ( s u m c 1 , f 1 ) , ( s u m c 2 , f 2 ) , . . . , ( s u m c i − 1 , f i − 1 ) (sumc_0, f_0), (sumc_1,f_1), (sumc_2,f_2), ..., (sumc_{i-1}, f_{i-1}) (sumc0,f0),(sumc1,f1),(sumc2,f2),...,(sumci1,fi1)。不同的取值代入上面的式子可以得到不同的 f i f_i fi。我们的目标是使得 f i f_i fi最小,也就是让直线表达式中的截距 b b b最小。

在这里插入图片描述

根据上图,我们需要维护这些点的凸包的下边界,因为对于某一个直线来说,与它距离最近的点一定是在这些点上。


  • 如果该直线的斜率为k,怎么找到与它距离最近的点?

我们将凸包上的相邻两点组成直线的斜率标出来,如上图,可以发现 k 1 < k 2 < k 3 k_1<k_2<k_3 k1<k2<k3

k 1 < k < k 2 k_1<k<k_2 k1<k<k2。于是我们只需要找到第一个斜率大于k的位置的点。

  • 另外,本题还有一些其他性质,由于这两个特殊的性质,我们可以进行均摊 O ( 1 ) O(1) O(1)的转移。

1、斜率 k = s u m t i + S k=sumt_i+S k=sumti+S,因为 t t t S S S都是大于 0 0 0的,所以我们从 1 1 1 n n n f i f_i fi时,其对应询问的直线的斜率是单调递增的。

​ 因此,在查询时,如果队头某些点(斜率小于当前直线斜率)不可能作为答案,那么它在后面时更不可能作为答案,可以直接删除。

2、我们不断新加点 ( s u m c j , f j ) (sumc_j,f_j) (sumcj,fj)时,新加点的横坐标也是单调递增的。因为 c c c是大于 0 0 0的。

​ 这意味着我们新加入的点一定不会被删掉。如果新加的点可以和队列末尾的点组成凸包,那么加进去,否则将末尾的点删掉,直到可以和队列中的点组成凸包。

#include <bits/stdc++.h>
#define endl '\n'
#define INF 0x3f3f3f3f
#define all(x) begin(x),end(x)
#define debug(x) cout<<#x<<": "<<x<<endl;
using namespace std;
using ll = long long;
const int N = 3e5 + 10;

int n, s, q[N];
ll c[N], t[N], f[N];

int main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	
	cin >> n >> s;
	for (int i = 1; i <= n; i ++) {
		cin >> t[i] >> c[i];
		t[i] += t[i - 1];
		c[i] += c[i - 1];
	}
	
	int hh = 0, tt = -1;
	q[++ tt] = 0;  // (c[0], f[0])
	for (int i = 1; i <= n; i ++) {
		// 求f[i], 对应直线斜率k=t[i]+s
		// hh < tt 确保队列中有>=2个点,若队头点组成的斜率小于当前斜率,出队
		while (hh < tt && (f[q[hh + 1]] - f[q[hh]]) <= (t[i] + s) * (c[q[hh + 1]] - c[q[hh]]))	hh ++;
		int j = q[hh];  // 此时最优转移点就是队头的点
		f[i] = f[j] - (t[i] + s) * c[j] + t[i] * c[i] + s * c[n];
		//将点(c[i], f[i])加入队列,加入前将不符合条件的点出队
		while (hh < tt && (f[q[tt]] - f[q[tt - 1]]) * (c[i] - c[q[tt]]) >= (f[i] - f[q[tt]]) * (c[q[tt]] - c[q[tt - 1]]))	tt --;
		q[++ tt] = i;
	}
	cout << f[n] << endl;
	
	return 0;
}

CF1715E Long Way Home

题意
在这里插入图片描述
数据范围 1 ≤ n , m ≤ 1 e 5 , 1 ≤ k ≤ 20 , 1 ≤ w ≤ 1 e 9 1 \le n,m \le1e5,1 \le k \le 20,1 \le w \le 1e9 1n,m1e51k201w1e9


我们先用 d i j s t r a dijstra dijstra求出 d i s t i dist_i disti,表示只走道路从 1 1 1 i i i的最小值。

  • 然后考虑只飞一次,能使得 d i s t i dist_i disti如何更新?

另设一个数组 d p dp dp,其中 d p i dp_i dpi表示飞完后从 1 1 1 i i i的最短花费。

对于 d i s t i dist_i disti,我们只需要处理从 1 1 1 i i i最后一次是飞的最短花费。
即其路线是 1 → j → i 1 \to j \to i 1ji,那么 d p i = m i n { d i s t j + ( i − j ) 2    ∣ 1 ≤ j ≤ n   } dp_i=min\{dist_j + (i-j)^2 \ \ | 1\le j \le n \ \} dpi=min{distj+(ij)2  ∣1jn }
然后更新之后我们将所有被更新过的点放入优先队列中在跑一边 d i j s t r a dijstra dijstra
这样就得到了只飞一次的最小花费。
题目要求 k k k次,且 k ≤ 20 k\le20 k20,那么我们循环 k k k次这个过程即可。

  • 还有一个问题是转移方程是 O ( n ) O(n) O(n)的一个转移,求 n n n个合起来就是 O ( n 2 ) O(n^2) O(n2),显然需要优化。

d p i = m i n { d i s t j + ( i − j ) 2    ∣ 1 ≤ j ≤ n   } dp_i=min\{dist_j + (i-j)^2 \ \ | 1\le j \le n \ \} dpi=min{distj+(ij)2  ∣1jn }
可以写成 d i s t j + j 2 = 2 i j + d p i − i 2 dist_j+j^2=2ij+dp_i-i^2 distj+j2=2ij+dpii2
这里将其看成 y = k x + b y=kx+b y=kx+b

其中 Y i = d i s t i + i 2 , X i = i Y_i=dist_i+i^2,X_i=i Yi=disti+i2Xi=i
注意本题也有与任务安排类似的特殊性质:即每个直线的斜率k是单调递增的,新加入的点的横坐标也是单调递增的。
有些题目不满足上面的性质,那么维护时就要使用一些其他的方法。

#include <bits/stdc++.h>
#define endl '\n'
#define INF 0x3f3f3f3f
#define all(x) begin(x),end(x)
#define debug(x) cout<<#x<<": "<<x<<endl;
using namespace std;
using ll = long long;
const int N = 1e5 + 10;

int n, m, k, q[N];
ll dist[N], dp[N];
vector<pair<int, int>> g[N];
bool vis[N];

priority_queue<pair<ll, int>, vector<pair<ll, int>>, greater<>> Q;

void dijkstra() {
	memset(vis, 0, sizeof vis);
	while (Q.size()) {
		auto [d, u] = Q.top();
		Q.pop();
		if (vis[u])	continue;
		vis[u] = true;
		for (auto &[v, w]: g[u]) {
			if (dist[v] > dist[u] + w) {
				dist[v] = dist[u] + w;
				if (!vis[v])	Q.emplace(dist[v], v);
			}
		}
	}
}

inline ll X(ll i) { return i; }
inline ll Y(ll i) { return dp[i] + i * i; }
inline double slope(ll i, ll j) {  // 由于范围太大,交叉相乘判大小会溢出,只能用除法
	return (double)(Y(j) - Y(i)) / (X(j) - X(i));
}


int main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	
	cin >> n >> m >> k;
	while (m --) {
		int u, v, w;
		cin >> u >> v >> w;
		g[u].push_back({v, w});
		g[v].push_back({u, w});
	}
	
	memset(dist, 0x3f, sizeof dist);
	dist[1] = 0;
	Q.emplace(dist[1], 1);
	dijkstra();
	
	for (int _ = 1; _ <= k; _ ++) {
		for (int i = 1; i <= n; i ++)	dp[i] = dist[i];
		// 维护所有点的凸包
		int hh = 0, tt = -1;
		for (int i = 1; i <= n; i ++) {
			while (hh < tt && slope(q[tt - 1], q[tt]) >= slope(q[tt], i))	tt --;
			q[++ tt] = i;
		}
		// 寻找最优转移点更新dist
		for (int i = 1; i <= n; i ++) {
			while (hh < tt && slope(q[hh], q[hh + 1]) <= 2ll * i)	hh ++;
			int j = q[hh];
			if (dist[i] > dp[j] + (ll)(i - j) * (i - j)) {
				dist[i] = dp[j] + (ll)(i - j) * (i - j);
				Q.emplace(dist[i], i);
			}
		}
		dijkstra();
	}
	
	for (int i = 1; i <= n; i ++)	cout << dist[i] << " \n"[i == n];
	
	return 0;
}

任务安排3

这一题与任务安排2唯一不同的还是数据范围。
在这里插入图片描述
可以发现,T存在负数。这样以来我们每次求 f i f_i fi时,随着 i i i的递增,它们对应直线的斜率 t i + S t_i+S ti+S不再是递增的了,这样我们就不能删除队头的点,因为以后的斜率可能会更小,有可能会用到队头的点,于是我们寻找最优转移点的时候只能在维护出来的凸包上二分。
复杂度变为 O ( n l o g n ) O(nlogn) O(nlogn)
(需要注意的是,本题数据在计算过程中会出现 l o n g l o n g long long longlong溢出的情况,于是这里使用了 _ _ i n t 128 \_\_int128 __int128

#include <bits/stdc++.h>
#define endl '\n'
#define INF 0x3f3f3f3f
#define all(x) begin(x),end(x)
#define debug(x) cout<<#x<<": "<<x<<endl;
using namespace std;
using ll = long long;

template <typename T>
inline void read(T &x) {
	x = 0; int f = 1;
	char ch = getchar();
	while (!isdigit(ch))  { if (ch == '-') f = -1; ch = getchar(); }
	while (isdigit(ch))  x = x * 10 + ch - '0', ch = getchar();
	x *= f;
}

template <typename T, typename ...Args>
inline void read(T &t, Args &...args) {
	read(t); read(args...);
}

template <typename T>
inline void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9)   write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T>  
inline void write(T x, char ch) {
	write(x), putchar(ch);
}

const int N = 3e5 + 10;

int n, s, q[N];
__int128 t[N], c[N], f[N];

int main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	
	read(n, s);
	for (int i = 1; i <= n; i ++) {
		read(t[i], c[i]);
		t[i] += t[i - 1];
		c[i] += c[i - 1];
	}
	
	int hh = 0, tt = -1;
	q[++ tt] = 0;
	for (int i = 1; i <= n; i ++) {
		//二分
		int l = hh - 1, r = tt;
		while (l + 1 < r) {
			int mid = l + r >> 1;
			if ((f[q[mid + 1]] - f[q[mid]]) <= (t[i] + s) * (c[q[mid + 1]] - c[q[mid]]))	l = mid;
			else	r = mid;
		}
		
		int j = q[r];
		f[i] = f[j] - (t[i] + s) * c[j] + t[i] * c[i] + s * c[n];
		while (hh < tt && (f[q[tt]] - f[q[tt - 1]]) * (c[i] - c[q[tt]]) >= (f[i] - f[q[tt]]) * (c[q[tt]] - c[q[tt - 1]]))	tt --;
		q[++ tt] = i;
	}
	write(f[n], '\n');
	
	return 0;
}

运输小猫

题意:
n n n座山, m m m只喵, P P P个饲养员。(编号从 1 1 1开始)
i i i座山与第 i − 1 i-1 i1座山之间相隔 d i d_i di
i i i只喵会在第 H i H_i Hi座山上玩耍,直到时间 T i T_i Ti才结束玩耍并等待饲养员来接她。
所有的饲养员一开始都在第 1 1 1座山。现在安排饲养员的出发时刻(可以是负数,理解为提前出发)。
每个饲养员的速度为 1 1 1 / / /单位时间,他们会从 1 1 1号山走到 N N N号山接走在等待的喵。
你的任务是规划每个饲养员从 1 1 1 号山出发的时间,使得所有猫等待时间的总和尽量小。

数据范围
在这里插入图片描述

做法:
首先求一下山之间距离的前缀和,使得 d i d_i di表示 1 1 1号山到 i i i号山的距离。

对于第 i i i只喵,设饲养员的出发时间为 S S S,则如果该饲养员能接到第 i i i只喵,意味着 S + d H i ≥ T i S+d_{H_i} \ge T_i S+dHiTi。所以第 i i i只喵要想能被接到,必须存在一个饲养员的出发时间 S ≥ T i − d H i S \ge T_i-d_{H_i} STidHi
对于所有的喵,我们可以求出来一个最早出发时间的数组 a a a,其中 a i = T i − d H i a_i=T_i-d_{H_i} ai=TidHi

对数组 a a a从小到大排序。对于一个饲养员,他一定是接走 a a a数组中连续的一批小喵。设饲养员接走的是区间 [ l , r ] [l,r] [l,r]内的小喵,那么该饲养员的出发时间为 a r a_r ar时对于当前区间是最优的。该批小喵的等待时间之和就是 a r − a l + a r − a l − 1 + . . . + a r − a r = ( r − l + 1 ) ∗ a r − ∑ i = l r a i a_r-a_l+a_r-a_{l-1}+...+a_r-a_r=(r-l+1)*a_r-\sum_{i=l}^ra_i aral+aral1+...+arar=(rl+1)ari=lrai

问题就转化成了,将 a a a数组分成最多 P P P段,每一段的代价是 ( r − l + 1 ) ∗ a r − ∑ i = l r a i (r-l+1)*a_r-\sum_{i=l}^ra_i (rl+1)ari=lrai,使得总代价最小。然后我们就可以进行 d p dp dp了。(喜)

s s s数组为 a a a数组的前缀和。
状态表示为 f j , i f_{j,i} fj,i:前 i i i只喵分成 j j j组的最小花费。
状态转移方程是 f j , i = m i n { f j − 1 , k + a i × ( i − k ) − ( s i − s k )    ∣ 0 ≤ k < i    } f_{j,i}=min\{ f_{j-1,k}+a_i \times (i-k)-(s_i-s_k) \ \ | 0 \le k \lt i\ \ \} fj,i=min{fj1,k+ai×(ik)(sisk)  ∣0k<i  }

显然直接 d p dp dp是会超时的。
接下来就是斜率优化的过程。

f j , i = f j − 1 , k + a i × ( i − k ) − ( s i − s k ) f_{j,i}=f_{j-1,k}+a_i \times (i-k)-(s_i-s_k) fj,i=fj1,k+ai×(ik)(sisk)
左右移项得到 f j − 1 , k + s k = a i × k + f j , i − a i × i + s i f_{j-1,k}+s_k=a_i \times k+f_{j,i}-a_i\times i+s_i fj1,k+sk=ai×k+fj,iai×i+si
将其看成直线 y = k x + b y=kx+b y=kx+b
Y k = f j − 1 , k + s k , X k = k Y_k=f_{j-1,k}+s_k,X_k=k Yk=fj1,k+sk,Xk=k
需要注意的是,我们在计算第 j j j层的值时,维护的是第 j − 1 j-1 j1层的凸包。

#include <bits/stdc++.h>
#define endl '\n'
#define INF 0x3f3f3f3f
#define all(x) begin(x),end(x)
#define debug(x) cout<<#x<<": "<<x<<endl;
using namespace std;
using ll = long long;
const int N = 1e5 + 10, M = 110;

int n, m, p, q[N];
ll d[N], a[N], s[N], f[M][N];

ll Y(int j, int k) {
	return f[j - 1][k] + s[k];
}

int main() {
	cin.tie(0);
	ios::sync_with_stdio(false);
	
	cin >> n >> m >> p;
	for (int i = 2; i <= n; i ++) {
		cin >> d[i];
		d[i] += d[i - 1];
	}
	for (int i = 1; i <= m; i ++) {
		int h, t;
		cin >> h >> t;
		a[i] = t - d[h];
	}
	sort(a + 1, a + 1 + m);
	for (int i = 1; i <= m; i ++)	s[i] = s[i - 1] + a[i];
	
	memset(f, 0x3f, sizeof f);
	for (int i = 0; i <= p; i ++)	f[i][0] = 0;
	
	for (int j = 1; j <= p; j ++) {
		int hh = 0, tt = -1;
		q[++ tt] = 0;
		for (int i = 1; i <= m; i ++) {
			while (hh < tt && (Y(j, q[hh + 1]) - Y(j, q[hh])) 
				<= a[i] * (q[hh + 1] - q[hh]))	hh ++;
			int k = q[hh];
			f[j][i] = f[j - 1][k] + a[i] * (i - k) - (s[i] - s[k]);
			while (hh < tt && (Y(j, q[tt]) - Y(j, q[tt - 1])) * (i - q[tt]) 
				>= (Y(j, i) - Y(j, q[tt])) * (q[tt] - q[tt - 1]))	tt --;
			q[++ tt] = i;
		}
	}
	
	cout << f[p][m];
	
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值