爬虫案例—京东数据爬取、数据处理及数据可视化(效果+代码)

本文通过Python爬虫技术,详细介绍了如何从京东网站抓取商品数据,包括品牌、标题、价格和店铺等信息,并将数据存储到数据库。接着,文章展示了数据清洗的过程,去除无关数据。最后,使用matplotlib库进行数据可视化,包括品牌数量、店铺数量、品牌价格分布以及品牌和店铺的比例关系。所有代码片段均包含在内,可供参考和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、数据获取

        使用PyCharm(引用requests库、lxml库、json库、time库、openpyxl库和pymysql库)爬取京东网页相关数据(品牌、标题、价格、店铺等)

数据展示(片段):

        京东网页有反爬措施,需要自己在网页登录后,获取cookie,加到请求的header中(必要时引入time库,设置爬取睡眠时间降低封号概率)

爬取代码(片段):

###获取每一页的商品数据
def getlist(url,brand):
    global count #定义一个全局变量,主要是为了确定写入第几行
    # url="https://search.jd.com/search?keyword=笔记本&wq=笔记本&ev=exbrand_联想%5E&page=9&s=241&click=1"
    res = requests.get(url,headers=headers)
    res.encoding = 'utf-8'
    # text = (res.text).replace("")
    text = res.text
    selector = etree.HTML(text)
    list = selector.xpath('//*[@id="J_goodsList"]/ul/li')#获取数据所在

    for i in list:
        title = i.xpath('.//div[@class="p-name p-name-type-2"]/a/em/text()')[0].strip()#商品名称
        price = i.xpath('.//div[@class="p-price"]/strong/i/text()')[0]#商品价格
        shop = i.xpath('.//div[@class="p-shop"]/span/a/text()')[0] #获取店铺名称
        #获取评论数的id值
        # product_id = i.xpath('.//[@class="p-commit"]/strong/a/@id')[0].replace("J_comment_","")
        # comment_count = commentcount(product_id)
        # print("目前条数="+str(
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值