如何理解协方差矩阵和核函数的关系?
补充基础概念:
- 协方差:协方差衡量两个变量之间的线性关系方向与强度
- 协方差矩阵:对角线是方差,非对角线是协方差
- 例子:来自deepseek
两个随机变量,
步骤1:均值 ,
步骤2:去中心化,
步骤3:计算协方差
步骤4:构建协方差矩阵
为什么方差和协方差一样呢?
答:去中心化之后,两个随机变量一样
和高斯核函数的关系:
协方差矩阵:
假设有一组变量 x=[1 4 8] 和 y=[1 4 8] 协方差矩阵 按照上述步骤,计算协方差矩阵为
高斯过程中的协方差矩阵:
通常我们需要计算Kff,这 是训练集输入的协方差矩阵kernel(trained_X,trained_X)
公式为:
注意:每个数值代表一个样本点,都需要计算,不是矩阵或者向量计算。
我们现在知道trained_X=[1 4 8]
,点与点距离的平方
再带入高斯核公式得到:
意义:值越相近,表现在协方差矩阵上就是接近1。
思考:
协方差矩阵和高斯过程中的协方差矩阵计算方式存在差别。两者在结构上具有相似之处。
但作用层次不同:协方差矩阵是将一个向量看成整体,而高斯过程是一个点一个点的去计算。
协方差矩阵非对角元素:衡量随机变量之间的相近程度
高斯过程的协方差矩阵:衡量样本点之间的相近程度