如何理解高斯过程(三):协方差矩阵

如何理解协方差矩阵和核函数的关系?

补充基础概念:

  • 协方差:协方差衡量两个变量之间的线性关系方向与强度 

Cov(X,Y)=\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})

  • 协方差矩阵:对角线是方差,非对角线是协方差

\sum =\begin{bmatrix} Var(X))&Cov(X,Y) \\ Cov(X,Y)&Var(X)) \end{bmatrix}

  • 例子:来自deepseek

两个随机变量X=[70,80,90]Y=[60,70,90]

步骤1:均值 \bar{x}=80,\bar{y}=70

步骤2:去中心化X_{center}=[-10,0,10],Y_{center}=[-10,0,10]

步骤3:计算协方差Cov(X,Y)=100

步骤4:构建协方差矩阵

\sum =\begin{bmatrix} Var(X))&Cov(X,Y) \\ Cov(X,Y)&Var(X)) \end{bmatrix}=\begin{bmatrix} 100 & 100 \\ 100 & 100 \end{bmatrix}

为什么方差和协方差一样呢?

答:去中心化之后,两个随机变量一样

和高斯核函数的关系:

协方差矩阵:

假设有一组变量 x=[1 4 8] 和 y=[1 4 8] 协方差矩阵 按照上述步骤,计算协方差矩阵

\sum =\begin{bmatrix} Var(X))&Cov(X,Y) \\ Cov(X,Y)&Var(X)) \end{bmatrix}=\begin{bmatrix} 12.3333& 12.3333 \\ 12.3333 & 12.3333 \end{bmatrix}

高斯过程中的协方差矩阵:

通常我们需要计算Kff,这 是训练集输入的协方差矩阵kernel(trained_X,trained_X)

公式为:

注意:每个数值代表一个样本点,都需要计算,不是矩阵或者向量计算。

我们现在知道trained_X=[1 4 8]

,点与点距离的平方

再带入高斯核公式得到:

意义:值越相近,表现在协方差矩阵上就是接近1。

思考:

协方差矩阵和高斯过程中的协方差矩阵计算方式存在差别。两者在结构上具有相似之处。

但作用层次不同:协方差矩阵是将一个向量看成整体,而高斯过程是一个点一个点的去计算。

协方差矩阵非对角元素:衡量随机变量之间的相近程度

高斯过程的协方差矩阵:衡量样本点之间的相近程度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值