leetcode打卡--441. 排列硬币

题目

题目描述

你总共有 n 枚硬币,并计划将它们按阶梯状排列。对于一个由 k 行组成的阶梯,其第 i 行必须正好有 i 枚硬币。阶梯的最后一行 可能 是不完整的。

题目要求

给你一个数字 n ,计算并返回可形成 完整阶梯行 的总行数。

示例

解题思路

法一:暴力遍历 O(N)

class Solution {
public:
    int arrangeCoins(int n) {
        int i;
        long sum = 0;

        if (n == 1)
            return 1;

        for (i = 1; i < n; i++)
        {
            sum += i;
            if (sum > n)
                break;
        }

        return i - 1;
    }
};

法二:利用数学公式二分 O(logN)

  • 注意利用公式的坑点:溢出!!!

由于是等差数列,可用等差数列求和公式,
(首项+末项)*项数/2,为了便于对溢出的控制,建议把分数的分子拆到与比较项相乘。

class Solution {
public:
    int arrangeCoins(int n) {
        int l = 1, r = sqrt(n) * 2;
        while (l < r) {
            int mid = l + (r - l) / 2;
            if ((long long)mid * (mid + 1) < (long long)n * 2) {
                l = mid + 1;
            } else {
                r = mid;
            }
        }
        if ((long long)l * (l + 1) / 2 == n)
            return l;
        return l - 1;
    }
};

法三:数学求根公式法 O(1)

  • 根据 ( x + 1 ) ∗ x / 2 = n (x+1)*x/2=n (x+1)x/2=n 得出下面的一元二次方程:

x 2 + x − 2 n = 0 x^2+x-2n = 0 x2+x2n=0

由于 n > = 1 n>=1 n>=1 ,所以判别式:
Δ = b 2 − 4 a c = 8 n + 1 > 0 Δ =b^2-4ac=8n+1>0 Δ=b24ac=8n+1>0
故存在两根:
x 1 = ( − 1 − s q r t ( Δ ) ) / 2 x_1=(-1-sqrt(Δ))/2 x1=(1sqrt(Δ))/2
x 2 = ( − 1 + s q r t ( Δ ) ) / 2 x_2 = (-1+sqrt(Δ))/2 x2=(1+sqrt(Δ))/2

  1. 由此可知 x 1 x_1 x1 必定小于0,故舍去。

  2. x 2 x_2 x2 的解可能不是整数,当它为小数的时候,我们把小数点舍去。也就是向下取整即可。

于是得到以下代码:

class Solution {
public:
    int arrangeCoins(int n) {
        return (int) ((sqrt((long long) 8 * n + 1) - 1) / 2);
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值