Acwing动态规划计数DP——整数划分

2 篇文章 0 订阅

题目:

一个正整数 nn 可以表示成若干个正整数之和,形如:n=n1+n2+…+nk,其中 n1≥n2≥…≥nk,k≥1。

我们将这样的一种表示称为正整数 nn的一种划分。

现在给定一个正整数 n,请你求出 n 共有多少种不同的划分方法。

输入格式

共一行,包含一个整数 n。

输出格式

共一行,包含一个整数,表示总划分数量。

由于答案可能很大,输出结果请对 1e9+7 取模。

数据范围

1≤n≤1000

思路详解:

这道题主要可以用到完全背包的思想:

可以将题意理解为面对一个容量为n的背包,每次试图将体积为1到n的物品塞入,直至赛不满,问有多少种情况:

如5=5=4+1=3+2=3+1+1=2+2+1=2+1+1+1=1+1+1+1+1共7种情况。

定义一个动态规划数组dp[i][j],其中表示从1到i中的数字中选取,装入j的背包。

故此时按照完全背包的思路,装入i时的情况可以被分为:

装入1个i,装入2个i,装入3个i………装入s个i,其中s为可以装入i的最大值。

即有dp[i][j]=dp[i-1][j]+dp[i-1][j-i]+dp[i-1][j-2i]+…………dp[i-1][j-si];

而考虑dp[i][j-i],则也可以分为上述若干种情况,有:

dp[i][j-i]=         dp[i-1][j-i]+dp[i-1][j-2i]+…………dp[i-1][j-si];(因为无论如何j可以取i的数量s是不变的,所以后面不会多出来一项)

在这里可以惊奇地发现,后面居然是一样的,所以合并后有:

dp[i][j]=dp[i-1][j]+dp[i][j-i];   即为状态转移方程

代码部分:

#include <iostream>
#include <algorithm>

using namespace std;

//dp[i][j]=dp[i-1][j]+dp[i-1][j-i]+dp[i-1][j-2i]+…………dp[i-1][j-si];
//dp[i][j-i]=         dp[i-1][j-i]+dp[i-1][j-2i]+…………dp[i-1][j-si];
//dp[i][j]=dp[i-1][j]+dp[i][j-i];   状态转移方程

const int N=1010;
int mod=1e9+7;
int dp[N][N];
int n;//输入的整数

int main()
{
    cin>>n;
    dp[0][0]=1;
    for(int i=1;i<=n;i++)   dp[i][0]=1;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(j>=i)dp[i][j]=(dp[i-1][j]+dp[i][j-i])%mod;//i小于等于j,装得下,就可以分情况考虑装下几个i。
            else    dp[i][j]=dp[i-1][j];//i大于j,装不下,那就和1到i-1的选取方案数是一样的。
        }
    }
    cout<<dp[n][n];
    return 0;
}

采用一维数组可以降低空间复杂度(用完全背包类似的方法做等价替换,删去一维即可)

代码段如下所示:

#include <iostream>
#include <algorithm>

using namespace std;

//dp[i][j]=dp[i-1][j]+dp[i-1][j-i]+dp[i-1][j-2i]+…………dp[i-1][j-si];
//dp[i][j-i]=         dp[i-1][j-i]+dp[i-1][j-2i]+…………dp[i-1][j-si];
//dp[i][j]=dp[i-1][j]+dp[i][j-i];   状态转移方程

const int N=1010;
int mod=1e9+7;
int dp[N];
int n;//输入的整数

int main()
{
    cin>>n;
    dp[0]=1;
    for(int i=1;i<=n;i++)
        for(int j=i;j<=n;j++)
            dp[j]=(dp[j]+dp[j-i])%mod;        
    
    cout<<dp[n];
    return 0;
}

补充: 这边可以压缩为一维数组的理由是,dp[j-i]在dp[j]之前已经算过了,所以dp[j]只需要调用上一层的dp[j]以及已经算过的dp[j-i]即可,不会出现覆盖的问题,所以也可以让j从小到大去遍历。同时,当i大于j,即不够装的情况下,删掉i的那一维后会出现恒等式,直接删除这个判断即可,此时让j直接从i开始遍历,否则会浪费一定的时间

关于0-1背包和完全背包在正序逆序的二层循环的问题,可以考虑参考Acwing网站上大佬总结的笔记,我截了张图(来自Acwing大佬:有心人,若有侵权,立刻删除):

 

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值