数据集学习笔记(三):调用不同数据集获取trainloader和testloader

不同数据集

CIFAR10

通过这个代码会把数据集自动下载到root路径,然后通过root路径获取到训练和测试的数据集,再结合网络模型进行训练。

import torch
import torchvision
import torchvision.transforms as transforms
"""加载CIFAR10"""
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

"""如果要进行其他的数据增强则只需要改动transform里面的代码即可"""
# data_transform = {
#     "train": transforms.Compose([transforms.RandomResizedCrop(224),  # 随机裁剪,在缩放成224*224
#                                  transforms.RandomHorizontalFlip(),  # 水平方向随机翻转,概率为0.5
#                                  transforms.ToTensor(),
#                                  transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),
#     "test": transforms.Compose([transforms.Resize(256),
#                                transforms.CenterCrop(224),
#                                transforms.ToTensor(),
#                                transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}
                               
trainset = torchvision.datasets.CIFAR10(root='E:\dataset\cifar_10', train=True, download=True, transform=transform) # data_transform["train"]
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='E:\dataset\cifar_10', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
print(trainloader)
print(testloader)
print(testloader)
print(classes)

输出如下:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZZY_dl

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值