✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️
数据集介绍🍀
煤矸石训练数据集:891张;验证数据数据集:404张
数据集类别:0代表煤炭(coal),1代表矸石(gangue),2代表煤炭和矸石的混合物(coal and gangue)
所有数据都有对应的标签,可直接提供给YOLO网络进行训练,数据集已划分好。
划分格式如下:
root_path:
----images:
---------train:
-----------....(jpg)
---------val:
-----------....(jpg)
----labels:
---------train:
-----------....(txt)
---------val:
-----------....(txt)
原图展示:
在对煤矸石进行深入研究的过程中,我们采用了先进的技术手段,其中包括通过 X 射线对煤矸石进行处理后所得到的数据集。这些数据集详细地记录了煤矸石在 X 射线照射下所呈现出的各种特性数据,对于后续的分析和研究有着至关重要的意义。同时,为了确保整个研究过程的精准性和科学性,我们还配备了专业设备。这些专业设备具有高精度、高稳定性的特点,能够在对煤矸石数据集进行采集、处理和分析时,提供可靠的数据支持,保障整个研究工作能够顺利且高效地开展。下面是对煤矸石通过X射线处理后的原图及标注图。
部分标注可视化结果展示:
数据集训练精度展示🍀
在这个图中,横轴是召回率,范围从 0 到 1;纵轴是精度,范围也是从 0 到 1。通过这个图可以直观地看到各个类别在不同召回率下的精度表现,对于评估分类模型的性能有重要意义,特别是在处理煤和煤矸石这类可能存在数据不平衡问题的分类场景中。
数据集获取方式🍀
https://download.csdn.net/download/m0_51004308/88987233
其他煤矸石YOLO格式数据集🍀
在煤矸石图像数据的构建工作中,为了获取高质量、多样化且贴合实际应用场景的图像资源,我们精心策划并执行了一系列严谨的操作流程。
首先,通过专业的视频采集设备,深入到煤矸石的实际作业现场,如煤矿开采区、煤矸石堆放场地等,对真实环境下的煤矸石进行全方位、多角度的视频采集。这些视频涵盖了不同光照条件、不同开采阶段以及不同堆放状态下的煤矸石场景,最大程度地还原了煤矸石在现实中的真实面貌,为后续的数据处理提供了丰富且真实的素材基础。
采集到大量的真实视频后,我们利用先进的视频处理技术对其进行抽帧操作。根据既定的帧率和图像质量标准,从每一段视频中精确地抽取具有代表性的关键帧图像。这些抽取出来的帧图像不仅能够完整地保留煤矸石在不同时刻的特征信息,还能在保证数据质量的前提下,有效地控制数据量,提高后续处理的效率。
然而,仅仅依靠真实场景下的视频抽帧可能无法涵盖所有可能出现的煤矸石形态和情况。为了进一步丰富数据的多样性和完整性,我们采用了摆拍的方式。专业人员根据煤矸石在实际生产和使用过程中的各种可能情况,有针对性地对煤矸石进行摆放和布置,模拟出不同的组合、位置和角度,再次进行图像拍摄。摆拍过程中,严格遵循实际情况,确保所拍摄的图像依然具有高度的真实性和实用性。
在获取了大量通过抽帧和摆拍得到的煤矸石图像素材后,为了使其能够适配当前广泛应用的 YOLO(You Only Look Once)目标检测算法,我们组织专业的标注团队,依据 YOLO 格式的标注规范,对每一张图片进行细致的标注工作。标注人员需要准确地识别出图片中煤矸石的位置、形状和类别等关键信息,并以特定的坐标格式和标注语法在图片上进行标记,确保标注的准确性和一致性。
经过这一系列复杂而精细的操作流程,我们成功地得到了上千张标注为 YOLO 格式的真实煤矸石图片。这些图片组成的数据集,将为基于 YOLO 算法的煤矸石检测、识别等相关研究和应用提供坚实的数据支撑,助力相关领域的技术发展和创新。
如需要可私聊
✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️▶️➡️🌿🍀🍄🌟⭐❄️✅💖⚠️