1.下载cuda 和对应版本的cudnn
首先查看命令行查看自己电脑支持的cuda
nvidia-smi
然后注意可以向下兼容就是说下载的cuda版本可以低于支持的版本但是不能高于
查看CUDA与Driver Version对应关系表
CUDA 12.4 Update 1 Release Notes (nvidia.com)
查看对应的pytorch,torchvision与python版本对应关系及安装命令
GitHub - pytorch/vision: Datasets, Transforms and Models specific to Computer Vision
接下来就是下载了:
然后去下载
CUDA Toolkit Archive | NVIDIA Developer
cuDNN Archive | NVIDIA Developer
找到对应版本的cudnn
然后将cudnn里面的这三个文件粘贴到安装cuda的路径下替换原先的三个文件
2.以管理员的身份运行命令行
conda create -n pytorch python=3.8
(注意这样创建的虚拟环境位于Anconda的路径下面的env里面)
然后激活虚拟环境python
activate python
在虚拟环境里面下载pytorch
去官网找到对应cuda版本的pytorch
Previous PyTorch Versions | PyTorch
复制对应的命令到命令行里面 等待下载就可以了
例如:
# CUDA 12.1
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=12.1 -c pytorch -c nvidia
注意一些命令的使用:
quit() 是退出当前的python环境
deactivate是退出当前的虚拟环境