安装支持gpu的pytorch -----12.1cuda 和3.8的python------------windows11

1.下载cuda 和对应版本的cudnn

首先查看命令行查看自己电脑支持的cuda

nvidia-smi

然后注意可以向下兼容就是说下载的cuda版本可以低于支持的版本但是不能高于

查看CUDA与Driver Version对应关系表

CUDA 12.4 Update 1 Release Notes (nvidia.com)

查看对应的pytorch,torchvision与python版本对应关系及安装命令

GitHub - pytorch/vision: Datasets, Transforms and Models specific to Computer Vision

接下来就是下载了:

然后去下载

CUDA Toolkit Archive | NVIDIA Developer

cuDNN Archive | NVIDIA Developer

找到对应版本的cudnn

然后将cudnn里面的这三个文件粘贴到安装cuda的路径下替换原先的三个文件

2.以管理员的身份运行命令行

conda create -n pytorch python=3.8

(注意这样创建的虚拟环境位于Anconda的路径下面的env里面)

然后激活虚拟环境python

activate python

在虚拟环境里面下载pytorch

去官网找到对应cuda版本的pytorch

Previous PyTorch Versions | PyTorch

复制对应的命令到命令行里面 等待下载就可以了

例如:

# CUDA 12.1
conda install pytorch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 pytorch-cuda=12.1 -c pytorch -c nvidia

注意一些命令的使用:

quit() 是退出当前的python环境

deactivate是退出当前的虚拟环境

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值