安装cuda,cudnn详细教程--python3.8, navidia:445.87

实验室电脑上没有安装cuda且navidia版本较低,尝试了很多版本才成功,留一份实验室安装教程,以便后续使用。

适用环境:

Python 3.8 navidia程序版本:445.87 安装 cuda11.0 cudnn 8.0.5 已安装Anacada

#创建虚拟环境
conda create -n learn_pytorch Python=3.8

#激活/进入虚拟环境
conda activate learn_pytorch

安装cuda与cudnn

可以参考这篇文章:https://blog.csdn.net/qq_44707910/article/details/118096577

1.环境变量的配置:

CUDA_BIN_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin

CUDA_LIB_PATH= C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\lib\x64

CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0

CUDA_PATH_V10_2=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0

CUDA_SDK_BIN_PATH=%CUDA_SDK_PATH%\bin\win64

CUDA_SDK_LIB_PATH=%CUDA_SDK_PATH%\common\lib\x64

然后把下好的解压,把里面的文件重命名成cudnn,然后复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0

编辑用户系统变量

验证deviceQuery和bandwidthTest,在命令窗口运行测试文件,定位到 在cuda安装目录的 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite,分别输入deviceQuery.exe,bandwidthTest.exe并运行,两个地方的Result=PASS则说明通过,反之,Rsult=Fail 则需要重新安装。

下载:

pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html

安装完成:

>Conda list 查看安装信息

(learn_pytorch) C:\Users\Administrator>python

Python 3.9.16 (main, Mar  8 2023, 10:39:24) [MSC v.1916 64 bit (AMD64)] on win32

Type "help", "copyright", "credits" or "license" for more information.

>>> import torch

>>> torch.cuda.is_available()

True

>>>quit()

安装 tensorflow

参考这篇文章

tensorflow gpu版本安装教程_假装大人的博客-CSDN博客

>pip install tensorflow-gpu==2.4.0

测试:

>>> import tensorflow as tf

>>> print(tf.test.is_gpu_available())

True

>>> quit()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值