实验室电脑上没有安装cuda且navidia版本较低,尝试了很多版本才成功,留一份实验室安装教程,以便后续使用。
适用环境:
Python 3.8 navidia程序版本:445.87 安装 cuda11.0 cudnn 8.0.5 已安装Anacada
#创建虚拟环境
conda create -n learn_pytorch Python=3.8
#激活/进入虚拟环境
conda activate learn_pytorch
安装cuda与cudnn
可以参考这篇文章:https://blog.csdn.net/qq_44707910/article/details/118096577
1.环境变量的配置:
CUDA_BIN_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\bin
CUDA_LIB_PATH= C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0\lib\x64
CUDA_PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0
CUDA_PATH_V10_2=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0
CUDA_SDK_BIN_PATH=%CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH=%CUDA_SDK_PATH%\common\lib\x64
然后把下好的解压,把里面的文件重命名成cudnn,然后复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0
编辑用户系统变量
验证deviceQuery和bandwidthTest,在命令窗口运行测试文件,定位到 在cuda安装目录的 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\extras\demo_suite,分别输入deviceQuery.exe,bandwidthTest.exe并运行,两个地方的Result=PASS则说明通过,反之,Rsult=Fail 则需要重新安装。
下载:
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
安装完成:
>Conda list 查看安装信息
(learn_pytorch) C:\Users\Administrator>python
Python 3.9.16 (main, Mar 8 2023, 10:39:24) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
>>>quit()
安装 tensorflow
参考这篇文章
tensorflow gpu版本安装教程_假装大人的博客-CSDN博客
>pip install tensorflow-gpu==2.4.0
测试:
>>> import tensorflow as tf
>>> print(tf.test.is_gpu_available())
True
>>> quit()