分配问题(最小费用最大流)

题目:有 n 件工作要分配给 n 个人做。第 i个人做第 j件工作产生的效益为 。试设计一个将 n件工作分配给 n个人做的分配方案,使产生的总效益最大。

分析:这是一道多解法问题,可以用带剪枝的搜索和图论的最小费用最大流的方法来做,本文才去最小费用最大流的方法进行解决。

思路:

设立一个源点(2n+1)和汇点(2n+2),建图,

以源点(2n+1)向每个人i(1\leq i\leqslant n)分别连边,每条边容量cap是1,费用cost为0,

再让每个人 i(1\leq i\leqslant n) 向每件工作 j+n(1\leq j\leqslant n)分别连边,每条边容量是1,费用为c[i][j]

最后让每件工作j+n(1\leq j\leqslant n)向汇点(2n+2)连边,每条边容量是1,费用为0;

建图完毕后对改图跑最小费用最大流即可,求最小值可直接用最小费用最大流,求最大值则重新建图,将费用全部置为-cost,最大费用即为-ans。

AC代码:

/*
 author:wuzx
 */

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<utility>
#include<string>
#include<queue>
#include<map>
#include<set>
#include<iterator>
#include<iomanip>
#include<stack>
#include<cstdio>
#define ll long long
#define int long long
#define endl "\n"
#define P pair<int,int>
using namespace std;
typedef unsigned long long ull;
const int maxn = 210;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
using namespace std;
ll c[maxn][maxn];
struct Edge{
	ll from,to,cap,flow,cost;
};
struct MCMF{
	int n,m;
	vector<Edge> edge;
	vector<int> g[maxn];
	int inq[maxn];
	int d[maxn];
	int p[maxn];
	int a[maxn];
	
	void init(int n)
	{
		this->n=n;
		for(int i=0;i<maxn;i++)
			g[i].clear();
		edge.clear();
	}
	
	void add(int from,int to,int cap,int cost)
	{
		edge.push_back(Edge{from,to,cap,0,cost});
		edge.push_back(Edge{to,from,0,0,-cost});
		m=edge.size();
		g[from].push_back(m-2);
		g[to].push_back(m-1);
	}
	
	bool BellmanFord(int s,int t,int& flow,ll& cost)
	{
		for (int i = 0; i < maxn; i++)
			d[i] = inf;
		memset(inq,0,sizeof inq);
		d[s]=0;
		inq[s]=1;
		p[s]=0;
		a[s]=inf;
		
		queue<int> q;
		q.push(s);
		while(!q.empty())
		{
			int u=q.front();
			q.pop();
			inq[u]=0;
			for(int i=0;i<g[u].size();i++)
			{
				Edge& e=edge[g[u][i]];
				if(e.cap>e.flow&&d[e.to]>d[u]+e.cost)
				{
					d[e.to]=d[u]+e.cost;
					p[e.to]=g[u][i];
					a[e.to]=min(a[u],e.cap-e.flow);
					if(!inq[e.to])
					{
						q.push(e.to);
						inq[e.to]=1;
					}
				}
			}
		}
		if(d[t]==inf)
			return false;
		cost+=d[t]*a[t];
		flow+=a[t];
		int u=t;
		while(u!=s)
		{
			edge[p[u]].flow+=a[t];
			edge[p[u]^1].flow-=a[t];
			u=edge[p[u]].from;
		}
		return true;
	}
	
	ll MincostMaxflow(int s,int t,ll& cost)
	{
		ll flow=0;cost=0;
		while(BellmanFord(s,t,flow,cost));
		return flow;
	}
};
signed main()
{
	ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
//    freopen("in.txt","r",stdin);
//	freopen("out.txt","w",stdout);
	int s,t,n;
	cin>>n;
	s=2*n+1,t=2*n+2;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			cin>>c[i][j];
	MCMF slove;
	slove.init(n);
	ll cc=0;
	for(int i=1;i<=n;i++)
		slove.add(s,i,1,0);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			slove.add(i,n+j,1,c[i][j]);
	for(int i=1;i<=n;i++)
		slove.add(i+n,t,1,0);
	slove.MincostMaxflow(s,t,cc);
	cout<<cc<<endl;
	
	MCMF slove1;
	slove1.init(n);
	for(int i=1;i<=n;i++)
		slove1.add(s,i,1,0);
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			slove1.add(i,n+j,1,-c[i][j]);
	for(int i=1;i<=n;i++)
		slove1.add(i+n,t,1,0);
	slove1.MincostMaxflow(s,t,cc);
	cout<<-cc<<endl;
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值