题目:有 n 件工作要分配给 n 个人做。第 i个人做第 j件工作产生的效益为 。试设计一个将 n件工作分配给 n个人做的分配方案,使产生的总效益最大。
分析:这是一道多解法问题,可以用带剪枝的搜索和图论的最小费用最大流的方法来做,本文才去最小费用最大流的方法进行解决。
思路:
设立一个源点(2n+1)和汇点(2n+2),建图,
以源点(2n+1)向每个人分别连边,每条边容量cap是1,费用cost为0,
再让每个人 向每件工作 分别连边,每条边容量是1,费用为
最后让每件工作向汇点(2n+2)连边,每条边容量是1,费用为0;
建图完毕后对改图跑最小费用最大流即可,求最小值可直接用最小费用最大流,求最大值则重新建图,将费用全部置为-cost,最大费用即为-ans。
AC代码:
/*
author:wuzx
*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
#include<utility>
#include<string>
#include<queue>
#include<map>
#include<set>
#include<iterator>
#include<iomanip>
#include<stack>
#include<cstdio>
#define ll long long
#define int long long
#define endl "\n"
#define P pair<int,int>
using namespace std;
typedef unsigned long long ull;
const int maxn = 210;
const int inf = 0x3f3f3f3f;
const int mod = 1e9 + 7;
using namespace std;
ll c[maxn][maxn];
struct Edge{
ll from,to,cap,flow,cost;
};
struct MCMF{
int n,m;
vector<Edge> edge;
vector<int> g[maxn];
int inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn];
void init(int n)
{
this->n=n;
for(int i=0;i<maxn;i++)
g[i].clear();
edge.clear();
}
void add(int from,int to,int cap,int cost)
{
edge.push_back(Edge{from,to,cap,0,cost});
edge.push_back(Edge{to,from,0,0,-cost});
m=edge.size();
g[from].push_back(m-2);
g[to].push_back(m-1);
}
bool BellmanFord(int s,int t,int& flow,ll& cost)
{
for (int i = 0; i < maxn; i++)
d[i] = inf;
memset(inq,0,sizeof inq);
d[s]=0;
inq[s]=1;
p[s]=0;
a[s]=inf;
queue<int> q;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
inq[u]=0;
for(int i=0;i<g[u].size();i++)
{
Edge& e=edge[g[u][i]];
if(e.cap>e.flow&&d[e.to]>d[u]+e.cost)
{
d[e.to]=d[u]+e.cost;
p[e.to]=g[u][i];
a[e.to]=min(a[u],e.cap-e.flow);
if(!inq[e.to])
{
q.push(e.to);
inq[e.to]=1;
}
}
}
}
if(d[t]==inf)
return false;
cost+=d[t]*a[t];
flow+=a[t];
int u=t;
while(u!=s)
{
edge[p[u]].flow+=a[t];
edge[p[u]^1].flow-=a[t];
u=edge[p[u]].from;
}
return true;
}
ll MincostMaxflow(int s,int t,ll& cost)
{
ll flow=0;cost=0;
while(BellmanFord(s,t,flow,cost));
return flow;
}
};
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);cout.tie(0);
// freopen("in.txt","r",stdin);
// freopen("out.txt","w",stdout);
int s,t,n;
cin>>n;
s=2*n+1,t=2*n+2;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>c[i][j];
MCMF slove;
slove.init(n);
ll cc=0;
for(int i=1;i<=n;i++)
slove.add(s,i,1,0);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
slove.add(i,n+j,1,c[i][j]);
for(int i=1;i<=n;i++)
slove.add(i+n,t,1,0);
slove.MincostMaxflow(s,t,cc);
cout<<cc<<endl;
MCMF slove1;
slove1.init(n);
for(int i=1;i<=n;i++)
slove1.add(s,i,1,0);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
slove1.add(i,n+j,1,-c[i][j]);
for(int i=1;i<=n;i++)
slove1.add(i+n,t,1,0);
slove1.MincostMaxflow(s,t,cc);
cout<<-cc<<endl;
return 0;
}