假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。
对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值
示例:
输入: g = [1,2,3], s = [1,1]
输出: 1
解释:
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。
问题 :
因为要尽可能满足数量多的孩子,那么怎么实现这样最优的匹配呢 ?对于两个乱序的数组,不好去判断值的大小关系,所以我们可以对两个数组先进行递增的排序,从低位比较,这样就可以实现最优分配。因为如果第一个饼干值(s)不满足 >= 胃口值(g),那么 g 中之后的值s[]更不会满足,如果第一个满足了,那后面的肯定都满足,而且值也是递增的,那么这样得到的匹配值即是最优的
代码部分:
package Class02;
import java.util.Arrays;
/**
* 分发饼干
* 得到一个最优的分发饼干的数量
* 方法:首先进行一个递增排序,从低位开始满足,这样就可以实现最优分配。
* 因为如果第一个s[]不满足 >= g[],那么之后的也不会满足,如果第一个满足了,
* 那后面的肯定都满足。所以这样得到的值即是最优的。
*/
public class LeetCode_455_AssignCookie {
public int assignCookies (int [] g,int [] s){
if(g == null || s ==null) return 0;
//先进行递增排序
Arrays.sort(g);
Arrays.sort(s);
//用while循环能更好的实现控制下标的增减。
int count = 0;
int index_s = 0;
int index_g = 0;
while(index_g < g.length && index_s < s.length) {
//判断饼干值是否满足胃口
if(s[index_s] >= g[index_g]){
count ++;
index_g ++;
index_s ++;
} else { //不满足就判断下一个饼干值
index_s ++;
}
}
return count;
}
}
心得:while循环能更好的实现控制下标增减,当进行类似本例数组值比较时,需要对循环的数组下标进行控制,使用for循环不好达到这样的效果。