AtCoder Regular Contest 063 E - Integers on a Tree 构造 + 二分图染色

传送门

题意:

给你一颗 n n n个点的树,初始的时候某些点有权值 p i p_i pi,现在你需要给没给定的点赋一个权值,使得任意相邻点权值之差的绝对值等于 1 1 1,若无解输出 N o No No

1 ≤ n ≤ 1 e 5 , 1 ≤ k ≤ n , 0 ≤ p j ≤ 1 e 5 1\le n\le 1e5,1\le k\le n,0\le p_j\le 1e5 1n1e5,1kn,0pj1e5

思路:

考虑以定一个根,先递归儿子,求出儿子能取到的权值范围,让后根据儿子的范围来确定当前点的范围,不合法的话就直接输出 N o No No即可。

如果合法的话,显然从我们之前选定的根开始随意的取一个区间内的合法值一定可以构造出答案。

#include<bits/stdc++.h>
#define X first
#define Y second
#define Mid (tr[u].l+tr[u].r>>1)
#define pb push_back
using namespace std;

const int N=1000010,INF=0x3f3f3f3f,mod=1e9+7;
typedef long long LL;

int n,m;
vector<int>v[N];
int a[N],col[N];
int l[N],r[N];

void dfs_col(int u,int fa,int c) {
    col[u]=c;
    for(auto x:v[u]) {
        if(x==fa) continue;
        dfs_col(x,u,!c);
    }
}

void dfs(int u,int fa) {
    for(auto x:v[u]) {
        if(x==fa) continue;
        dfs(x,u);
        l[u]=max(l[u],l[x]-1);
        r[u]=min(r[u],r[x]+1);
    }
    if(l[u]>r[u]) {
        puts("No");
        exit(0);
    }
}

void dfs_ans(int u,int fa,int val) {
    a[u]=val;
    for(auto x:v[u]) {
        if(x==fa) continue;
        if(val-1>=l[x]&&val-1<=r[x]) dfs_ans(x,u,val-1);
        else dfs_ans(x,u,val+1);
    }
}

void solve() {
    scanf("%d",&n);
    for(int i=1;i<=n-1;i++) {
        int a,b; scanf("%d%d",&a,&b);
        v[a].push_back(b);
        v[b].push_back(a);
    }
    for(int i=1;i<=n;i++) l[i]=-INF,r[i]=INF;
    memset(a,-1,sizeof(a));
    scanf("%d",&m);
    for(int i=1;i<=m;i++) {
        int aa,b; scanf("%d%d",&aa,&b);
        a[aa]=b;
        l[aa]=b; r[aa]=b;
    }
    for(int i=1;i<=n;i++) if(a[i]>=0) {
        dfs_col(i,0,a[i]%2);
        break;
    }
    for(int i=1;i<=n;i++) if(a[i]>=0&&(a[i]%2!=col[i])) {
        puts("No");
        return;
    }
    dfs(1,0);
    dfs_ans(1,0,l[1]);
    puts("Yes");
    for(int i=1;i<=n;i++) printf("%d\n",a[i]);
    puts("");
}

int main() {
	int _=1;
	while(_--) {
		solve();
	}

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值