AcWing 859. Kruskal算法求最小生成树(Kruskal算法)

题目链接点击查看

题目描述

给定一个 n 个点 m 条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

给定一张边带权的无向图 G=(V,E),其中 V 表示图中点的集合,E 表示图中边的集合,n=|V|,m=|E|。

由 V 中的全部 n 个顶点和 E 中 n−1 条边构成的无向连通子图被称为 G 的一棵生成树,其中边的权值之和最小的生成树被称为无向图 G 的最小生成树。

输入输出格式

输入

第一行包含两个整数 n 和 m。
接下来 m 行,每行包含三个整数 u,v,w,表示点 u 和点 v 之间存在一条权值为 w 的边。

输出

共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出 impossible。

输入输出样例

输入

4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4

输出

6

题目分析

Kruskal算法常用于解决稀疏图的最小生成树问题。Kruskal算法也是基于贪心算法思想,不过与Prim算法不同,前者以边为主体,后者以点为主体。算法一般分为三步走 : 1. 先将图中边按权重由小到大排序。 2. 每次择取没选过的权重最小的边,判断此边加入最小生成树边集后是否构成回路,如构成回路则舍弃。 3. 选取n - 1条边使n个点相连。

以上是Kruskal算法的核心步骤。而且,我们使用结构体来存储图中边,要想将图中边按权重从小到大排序,需要在结构体内部重载 < 符号。 判断是否构成回路,我们这里要用到并查集,在Kruskal函数中,先初始化并查集,即每个点的所属集合的根节点为其本身,由于边已经排完序,我们从小到大依次选择,如果边的两个端点不再同一个集合中,则我们将两个点所属集合合并,表明将这条边加入集合。由此可见,并查集维护的是最小生成树的边集,如果两个点不属于同一个集合,说明将两个顶点之间的边加入并查集不会生成回路。我们在找每一个集合的根节点的时候,用到的是路径压缩算法。在此过程中我们用res记录最小生成树每一条边的权重,用cnt记录边的条数,每一次在判断不构成回路时,将cnt ++ ,res += w。在最后如果cnt < n -1 即选取的边数小于n - 1意味着构不成最小生成树,我们返回INF,反之则返回我们计算的权重和res。详见如下代码。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 1e5 + 7, INF = 0x3f3f3f3f, M = 2e5 + 7;
int n, m;
int p[N];
struct Edge {
	int v1, v2, w;
	bool operator < (const Edge &W) const {//重载 < 号 结构体比较按照的是边权重的大小 
	  return w < W.w;
	}
}edges[M];
int find(int x) {
	if (p[x] != x) p[x] = find(p[x]);//路径压缩 
	return p[x]; 
}
int kruskal() {
	sort(edges, edges + m);//将所有边按照权重大小进行排序。 
	for (int i = 1; i <= n; i ++ ) p[i] = i;//初始化并查集 
	int res  = 0, cnt = 0;
	for (int i = 0; i < m; i ++ ) {
		int v1 = edges[i].v1, v2 = edges[i].v2, w = edges[i].w;
		v1 = find(v1), v2 = find(v2);
		if (v1 != v2) {
			p[v1] = v2;
			res += w;
			cnt ++ ;
		} 
	} 
	if (cnt < n - 1) return INF;
	return res;
}
int main() {
	cin >> n >> m;
	for (int i = 0; i < m; i ++ ) {
		int v1, v2, w;
		cin >> v1 >> v2 >> w;
		edges[i] = {v1, v2, w}; 
	}
	int t = kruskal();
	if (t == INF) cout << "impossible" << endl;
	else cout << t << endl; 
	return 0;
} 

在此给出Kruskal算法的相关模板

时间复杂度是 O(mlogm), n 表示点数,m 表示边数
int n, m;       // n是点数,m是边数
int p[N];       // 并查集的父节点数组

struct Edge     // 存储边
{
    int a, b, w;

    bool operator< (const Edge &W)const
    {
        return w < W.w;
    }
}edges[M];

int find(int x)     // 并查集核心操作
{
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int kruskal()
{
    sort(edges, edges + m);

    for (int i = 1; i <= n; i ++ ) p[i] = i;    // 初始化并查集

    int res = 0, cnt = 0;
    for (int i = 0; i < m; i ++ )
    {
        int a = edges[i].a, b = edges[i].b, w = edges[i].w;

        a = find(a), b = find(b);
        if (a != b)     // 如果两个连通块不连通,则将这两个连通块合并
        {
            p[a] = b;
            res += w;
            cnt ++ ;
        }
    }

    if (cnt < n - 1) return INF;
    return res;
}

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在森林中麋了鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值