最小生成树-Kruskal算法详解(含全部代码)_kruskal算法代码

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新网络安全全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上网络安全知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip204888 (备注网络安全)
img

正文

与Prim算法对比


适用条件

加权连通图(可以判定图是否连通)

测试所用图

最小生成树-Prim算法详解(含全部代码)

所用图相同,就是课本上的。

算法步骤

1.对边按权重排序为e1、e2、…

2.若已选择V-1条边,停止。否则,按边的权重排序选择下一条边。

3.判断选择的边的两点是否在同一连通分支。若不在同一分支,则选择该边。返回步骤2。

Kruskal算法代码

//最小生成树-Kruskal算法
void Kruskal(Graph G)
{
	//初始化
	sort(l.begin(), l.end(),cmp);
	int verSet[MaxVerNum];
	int mincost = 0;
	for (int i = 0; i < G.vexnum; i++)
		verSet[i] = i;
	cout << "最小生成树所有边:" << endl;
	//依次查看边
	int all = 0;
	for (int i = 0; i < G.arcnum; i++)
	{
		if (all == G.vexnum - 1)break;
		int v1 = verSet[l[i].from];
		int v2 = verSet[l[i].to];
		//该边连接两个连通分支
		if (v1 != v2)
		{
			cout << "(" << l[i].from << "," << l[i].to << ") ";
			mincost += l[i].weight;
			//合并连通分支
			for (int j = 0; j < G.vexnum; j++)
			{
				if (verSet[j] == v2)verSet[j] = v1;
			}
			all++;
		}
	}
	cout << "最小生成树权值之和:" <<mincost<<endl;
}

全部代码

/*
Project: 图-最小生成树-Kruskal算法
Date:    2019/11/10
Author:  Frank Yu
基本操作函数:
InitGraph(Graph &G)             初始化函数 参数:图G 作用:初始化图的顶点表,邻接矩阵等
InsertNode(Graph &G,VexType v) 插入点函数 参数:图G,顶点v 作用:在图G中插入顶点v,即改变顶点表
InsertEdge(Graph &G,VexType v,VexType w) 插入边函数 参数:图G,某边两端点v和w 作用:在图G两点v,w之间加入边,即改变邻接矩阵
Adjancent(Graph G,VexType v,VexType w) 判断是否存在边(v,w)函数 参数:图G,某边两端点v和w 作用:判断是否存在边(v,w)
BFS(Graph G, int start)      广度遍历函数 参数:图G,开始结点下标start 作用:宽度遍历
DFS(Graph G, int start)      深度遍历函数(递归形式)参数:图G,开始结点下标start 作用:深度遍历
Dijkstra(Graph G, int v)     最短路径 - Dijkstra算法 参数:图G、源点v
功能实现函数:
CreateGraph(Graph &G) 创建图功能实现函数 参数:图G  InsertNode 作用:创建图
BFSTraverse(Graph G)  广度遍历功能实现函数 参数:图G 作用:宽度遍历
DFSTraverse(Graph G)  深度遍历功能实现函数 参数:图G 作用:深度遍历
Shortest_Dijkstra(Graph &G) 调用最短路径-Dijkstra算法 参数:图G、源点v
Prim(Graph G) 最小生成树-Prim算法 参数:图G
Kruskal(Graph G) 最小生成树-Kruskal算法 参数:图G
*/
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<string>
#include<set>
#include<list>
#include<queue>
#include<vector>
#include<map>
#include<iterator>
#include<algorithm>
#include<iostream>
#define MaxVerNum 100 //顶点最大数目值
#define VexType char //顶点数据类型
#define EdgeType int //边数据类型,无向图时邻接矩阵对称,有权值时表示权值,没有时1连0不连
#define INF 0x3f3f3f3f//作为最大值
using namespace std;
//图的数据结构
typedef struct Graph
{
	VexType Vex[MaxVerNum];//顶点表
	EdgeType Edge[MaxVerNum][MaxVerNum];//边表
	int vexnum, arcnum;//顶点数、边数
}Graph;
//迪杰斯特拉算法全局变量
bool S[MaxVerNum]; //顶点集
int D[MaxVerNum];  //到各个顶点的最短路径
int Pr[MaxVerNum]; //记录前驱
//Prim算法所用数据结构
typedef struct closedge
{
	int adjvex;     //最小边在集合U(最小边在当前子树顶点集合中的那个顶点的下标)
	int lowcost;    //最小边上的权值
};
//Kruskal算法所用数据结构
typedef struct Edge
{
	int from;   //起点下标
	int to;     //终点下标
	int weight; //权值
};
vector<Edge> l;
//按权值比较
bool cmp(Edge e1, Edge e2)
{
	if (e1.weight<e2.weight)
	{
		return true;
	}
	return false;
}
//*********************************************基本操作函数*****************************************//
//初始化函数 参数:图G 作用:初始化图的顶点表,邻接矩阵等
void InitGraph(Graph &G)
{
	memset(G.Vex, '#', sizeof(G.Vex));//初始化顶点表
									  //初始化边表
	for (int i = 0; i < MaxVerNum; i++)
		for (int j = 0; j < MaxVerNum; j++)
		{
			G.Edge[i][j] = INF;
			if (i == j)G.Edge[i][j] = 0;//在最小生成树时,考虑无环简单图,故自己到自己设置为0
		}

	G.arcnum = G.vexnum = 0;          //初始化顶点数、边数
}
//插入点函数 参数:图G,顶点v 作用:在图G中插入顶点v,即改变顶点表
bool InsertNode(Graph &G, VexType v)
{
	if (G.vexnum < MaxVerNum)
	{
		G.Vex[G.vexnum++] = v;
		return true;
	}
	return false;
}
//插入边函数 参数:图G,某边两端点v和w 作用:在图G两点v,w之间加入边,即改变邻接矩阵
bool InsertEdge(Graph &G, VexType v, VexType w, int weight)
{
	int p1, p2;//v,w两点下标
	p1 = p2 = -1;//初始化
	for (int i = 0; i<G.vexnum; i++)//寻找顶点下标
	{
		if (G.Vex[i] == v)p1 = i;
		if (G.Vex[i] == w)p2 = i;
	}
	if (-1 != p1&&-1 != p2)//两点均可在图中找到
	{
		G.Edge[p1][p2] = G.Edge[p2][p1] = weight;//无向图邻接矩阵对称
		G.arcnum++;
		//Kruskal算法增加代码
		Edge e;
		e.from = p1;
		e.to = p2;
		e.weight = weight;
		l.push_back(e);
		return true;
	}
	return false;
}
//判断是否存在边(v,w)函数 参数:图G,某边两端点v和w 作用:判断是否存在边(v,w) 
bool Adjancent(Graph G, VexType v, VexType w)
{
	int p1, p2;//v,w两点下标
	p1 = p2 = -1;//初始化
	for (int i = 0; i<G.vexnum; i++)//寻找顶点下标
	{
		if (G.Vex[i] == v)p1 = i;
		if (G.Vex[i] == w)p2 = i;
	}
	if (-1 != p1&&-1 != p2)//两点均可在图中找到
	{
		if (G.Edge[p1][p2] == 1)//存在边
		{
			return true;
		}
		return false;
	}
	return false;
}
bool visited[MaxVerNum];//访问标记数组,用于遍历时的标记
//广度遍历函数 参数:图G,开始结点下标start 作用:宽度遍历
void BFS(Graph G, int start)
{
	queue<int> Q;//辅助队列
	cout << G.Vex[start];//访问结点
	visited[start] = true;
	Q.push(start);//入队
	while (!Q.empty())//队列非空
	{
		int v = Q.front();//得到队头元素
		Q.pop();//出队
		for (int j = 0; j<G.vexnum; j++)//邻接点
		{
			if (G.Edge[v][j] <INF && !visited[j])//是邻接点且未访问
			{
				cout << "->";
				cout << G.Vex[j];//访问结点
				visited[j] = true;
				Q.push(j);//入队
			}
		}
	}//while
	cout << endl;
}
//深度遍历函数(递归形式)参数:图G,开始结点下标start 作用:深度遍历
void DFS(Graph G, int start)
{
	cout << G.Vex[start];//访问
	visited[start] = true;
	for (int j = 0; j < G.vexnum; j++)
	{
		if (G.Edge[start][j] < INF && !visited[j])//是邻接点且未访问
		{
			cout << "->";
			DFS(G, j);//递归深度遍历
		}
	}
}
//最短路径 - Dijkstra算法 参数:图G、源点v
void Dijkstra(Graph G, int v)
{
	//初始化
	int n = G.vexnum;//n为图的顶点个数
	for (int i = 0; i < n; i++)
	{
		S[i] = false;
		D[i] = G.Edge[v][i];
		if (D[i] < INF)Pr[i] = v; //v与i连接,v为前驱
		else Pr[i] = -1;
	}
	S[v] = true;
	D[v] = 0;
	//初始化结束,求最短路径,并加入S集
	for (int i = 1; i < n; i++)
	{
		int min = INF;
		int temp;
		for (int w = 0; w < n; w++)
			if (!S[w] && D[w] < min) //某点temp未加入s集,且为当前最短路径
			{
				temp = w;
				min = D[w];
			}
		S[temp] = true;
		//更新从源点出发至其余点的最短路径 通过temp
		for (int w = 0; w < n; w++)
			if (!S[w] && D[temp] + G.Edge[temp][w] < D[w])
			{
				D[w] = D[temp] + G.Edge[temp][w];
				Pr[w] = temp;
			}
	}
}
//输出最短路径
void Path(Graph G, int v)
{
	if (Pr[v] == -1)
		return;
	Path(G, Pr[v]);
	cout << G.Vex[Pr[v]] << "->";
}
//**********************************************功能实现函数*****************************************//
//打印图的顶点表
void PrintVex(Graph G)
{
	for (int i = 0; i < G.vexnum; i++)
	{
		cout << G.Vex[i] << " ";
	}
	cout << endl;
}
//打印图的边矩阵
void PrintEdge(Graph G)
{
	for (int i = 0; i < G.vexnum; i++)
	{
		for (int j = 0; j < G.vexnum; j++)
		{
			if (G.Edge[i][j] == INF)cout << "∞ ";
			else cout << G.Edge[i][j] << " ";
		}
		cout << endl;
	}
}
//创建图功能实现函数 参数:图G  InsertNode 作用:创建图
void CreateGraph(Graph &G)
{
	VexType v, w;
	int vn, an;//顶点数,边数
	cout << "请输入顶点数目:" << endl;
	cin >> vn;
	cout << "请输入边数目:" << endl;
	cin >> an;
	cout << "请输入所有顶点名称:" << endl;
	for (int i = 0; i<vn; i++)
	{
		cin >> v;
		if (InsertNode(G, v)) continue;//插入点
		else {
			cout << "输入错误!" << endl; break;
		}
	}



还有兄弟不知道网络安全面试可以提前刷题吗?费时一周整理的160+网络安全面试题,金九银十,做网络安全面试里的显眼包!


王岚嵚工程师面试题(附答案),只能帮兄弟们到这儿了!如果你能答对70%,找一个安全工作,问题不大。


对于有1-3年工作经验,想要跳槽的朋友来说,也是很好的温习资料!


【完整版领取方式在文末!!】


***93道网络安全面试题***


![](https://img-blog.csdnimg.cn/img_convert/6679c89ccd849f9504c48bb02882ef8d.png)








![](https://img-blog.csdnimg.cn/img_convert/07ce1a919614bde78921fb2f8ddf0c2f.png)





![](https://img-blog.csdnimg.cn/img_convert/44238619c3ba2d672b5b8dc4a529b01d.png)





内容实在太多,不一一截图了


### 黑客学习资源推荐


最后给大家分享一份全套的网络安全学习资料,给那些想学习 网络安全的小伙伴们一点帮助!


对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。


😝朋友们如果有需要的话,可以联系领取~

#### 1️⃣零基础入门


##### ① 学习路线


对于从来没有接触过网络安全的同学,我们帮你准备了详细的**学习成长路线图**。可以说是**最科学最系统的学习路线**,大家跟着这个大的方向学习准没问题。


![image](https://img-blog.csdnimg.cn/img_convert/acb3c4714e29498573a58a3c79c775da.gif#pic_center)


##### ② 路线对应学习视频


同时每个成长路线对应的板块都有配套的视频提供:


![image-20231025112050764](https://img-blog.csdnimg.cn/874ad4fd3dbe4f6bb3bff17885655014.png#pic_center)


#### 2️⃣视频配套工具&国内外网安书籍、文档


##### ① 工具


![](https://img-blog.csdnimg.cn/img_convert/d3f08d9a26927e48b1332a38401b3369.png#pic_center)


##### ② 视频


![image1](https://img-blog.csdnimg.cn/img_convert/f18acc028dc224b7ace77f2e260ba222.png#pic_center)


##### ③ 书籍


![image2](https://img-blog.csdnimg.cn/img_convert/769b7e13b39771b3a6e4397753dab12e.png#pic_center)

资源较为敏感,未展示全面,需要的最下面获取

![在这里插入图片描述](https://img-blog.csdnimg.cn/e4f9ac066e8c485f8407a99619f9c5b5.png#pic_center)![在这里插入图片描述](https://img-blog.csdnimg.cn/111f5462e7df433b981dc2430bb9ad39.png#pic_center)


##### ② 简历模板


![在这里插入图片描述](https://img-blog.csdnimg.cn/504b8be96bfa4dfb8befc2af49aabfa2.png#pic_center)

 **因篇幅有限,资料较为敏感仅展示部分资料,添加上方即可获取👆**

  





**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注网络安全)**
![img](https://img-blog.csdnimg.cn/img_convert/8903cbcd41d8a8b3174322f93dca3480.png)

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

.csdnimg.cn/111f5462e7df433b981dc2430bb9ad39.png#pic_center)


##### ② 简历模板


![在这里插入图片描述](https://img-blog.csdnimg.cn/504b8be96bfa4dfb8befc2af49aabfa2.png#pic_center)

 **因篇幅有限,资料较为敏感仅展示部分资料,添加上方即可获取👆**

  





**网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。**

**需要这份系统化的资料的朋友,可以添加V获取:vip204888 (备注网络安全)**
[外链图片转存中...(img-iyTiqpO6-1713374168879)]

**一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值