题目链接 :点击查看
题目描述:
有 N 种物品和一个容量是 V 的背包。第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。
输入输出格式:
输入
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
输出
输出一个整数,表示最大价值。
输入输出样例:
输入
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出
10
题目分析:
多重背包问题与完全背包问题类似,只不过对物品的数量增加了限制,在输入时要相应地输入物品 i 的个数。其朴素写法与完全背包问题的朴素写法相同,同样是三重循环,但是在第三重循化时,要加上k <= s[i] 的判断(选出物品的数量不超过其最大数量),与完全背包问题同样的解法同样的思想在此不过多赘述,详见AcWing 3. 完全背包问题, 具体代码如下。
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n, m;
const int N = 110;
int v[N], w[N], s[N];
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i] >> s[i];
for (int i = 1; i <= n; i ++ )
for(int j = 0; j <= m; j ++ )
for(int k = 0; k <= s[i] && k * v[i] <= j; k ++ )
f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + k * w[i]);
cout << f[n][m] << endl;
return 0;
}