AcWing 4. 多重背包问题(朴素写法)

题目链接点击查看

题目描述

有 N 种物品和一个容量是 V 的背包。第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。

输入输出格式

输入

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出

输出一个整数,表示最大价值。

输入输出样例

输入

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出

10

题目分析

多重背包问题与完全背包问题类似,只不过对物品的数量增加了限制,在输入时要相应地输入物品 i 的个数。其朴素写法与完全背包问题的朴素写法相同,同样是三重循环,但是在第三重循化时,要加上k <= s[i] 的判断(选出物品的数量不超过其最大数量),与完全背包问题同样的解法同样的思想在此不过多赘述,详见AcWing 3. 完全背包问题, 具体代码如下。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

int n, m; 
const int N  = 110;
int v[N], w[N], s[N];
int f[N][N];

int main() {
    cin >> n >> m;
    
	for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i] >> s[i];
    
    for (int i = 1; i <= n; i ++ ) 
        for(int j = 0; j <= m;  j ++ ) 
		    for(int k = 0; k <= s[i] && k * v[i] <= j; k ++ ) 
			    f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + k * w[i]);
			    
	cout << f[n][m] << endl;
	return 0;		    
			  
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在森林中麋了鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值