Spark (五) --------- Spark 核心编程


前言

Spark 计算框架为了能够进行高并发和高吞吐的数据处理,封装了三大数据结构,用于处理不同的应用场景。三大数据结构分别是:

➢ RDD : 弹性分布式数据集

➢ 累加器:分布式共享只写变量

➢ 广播变量:分布式共享只读变量

接下来我们一起看看这三大数据结构是如何在数据处理中使用的。


一、RDD

1. 什么是 RDD

RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是 Spark 中最基本的数据处理模型。代码中是一个抽象类,它代表一个弹性的、不可变、可分区、里面的元素可并行计算的集合。

➢ 弹性

  • 存储的弹性:内存与磁盘的自动切换;
  • 容错的弹性:数据丢失可以自动恢复;
  • 计算的弹性:计算出错重试机制;
  • 分片的弹性:可根据需要重新分片。

➢ 分布式:数据存储在大数据集群不同节点上

➢ 数据集:RDD 封装了计算逻辑,并不保存数据

➢ 数据抽象:RDD 是一个抽象类,需要子类具体实现

➢ 不可变:RDD 封装了计算逻辑,是不可以改变的,想要改变,只能产生新的 RDD,在新的 RDD 里面封装计算逻辑

➢ 可分区、并行计算

2. 核心属性

在这里插入图片描述
➢ 分区列表

RDD 数据结构中存在分区列表,用于执行任务时并行计算,是实现分布式计算的重要属性。

在这里插入图片描述

➢ 分区计算函数

Spark 在计算时,是使用分区函数对每一个分区进行计算

在这里插入图片描述
➢ RDD 之间的依赖关系

RDD 是计算模型的封装,当需求中需要将多个计算模型进行组合时,就需要将多个 RDD 建立依赖关系。

在这里插入图片描述
➢ 分区器

当数据为 KV 类型数据时,可以通过设定分区器自定义数据的分区。

在这里插入图片描述
➢ 首选位置

计算数据时,可以根据计算节点的状态选择不同的节点位置进行计算

在这里插入图片描述

3. 执行原理

从计算的角度来讲,数据处理过程中需要计算资源 (内存 & CPU) 和计算模型 (逻辑)。执行时,需要将计算资源和计算模型进行协调和整合。

Spark 框架在执行时,先申请资源,然后将应用程序的数据处理逻辑分解成一个一个的计算任务。然后将任务发到已经分配资源的计算节点上, 按照指定的计算模型进行数据计算。最后得到计算结果。

RDD 是 Spark 框架中用于数据处理的核心模型,接下来我们看看,在 Yarn 环境中,RDD的工作原理:

A、启动 Yarn 集群环境

在这里插入图片描述
B、Spark 通过申请资源创建调度节点和计算节点

在这里插入图片描述
C、Spark 框架根据需求将计算逻辑根据分区划分成不同的任务

在这里插入图片描述
D、调度节点将任务根据计算节点状态发送到对应的计算节点进行计算

在这里插入图片描述
从以上流程可以看出 RDD 在整个流程中主要用于将逻辑进行封装,并生成 Task 发送给Executor 节点执行计算,接下来我们就一起看看 Spark 框架中 RDD 是具体是如何进行数据处理的。

4. 基础编程

① RDD 创建

在 Spark 中创建 RDD 的创建方式可以分为四种:

A、从集合(内存)中创建 RDD

从集合中创建 RDD,Spark 主要提供了两个方法:parallelize 和 makeRDD

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val rdd1 = sparkContext.parallelize(
	List(1,2,3,4)
)
val rdd2 = sparkContext.makeRDD(
	List(1,2,3,4)
)
rdd1.collect().foreach(println)
rdd2.collect().foreach(println)
sparkContext.stop()

从底层代码实现来讲,makeRDD 方法其实就是 parallelize 方法

def makeRDD[T: ClassTag](
 seq: Seq[T],
 numSlices: Int = defaultParallelism): RDD[T] = withScope {
 	parallelize(seq, numSlices)
 }
)

B、从外部存储(文件)创建 RDD

由外部存储系统的数据集创建 RDD 包括:本地的文件系统,所有 Hadoop 支持的数据集,比如 HDFS、HBase 等。

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val fileRDD: RDD[String] = sparkContext.textFile("input")
fileRDD.collect().foreach(println)
sparkContext.stop()

C、从其他 RDD 创建

主要是通过一个 RDD 运算完后,再产生新的 RDD。详情请参考后续章节

D、直接创建 RDD (new)

使用 new 的方式直接构造 RDD,一般由 Spark 框架自身使用。

② RDD 并行度与分区

默认情况下,Spark 可以将一个作业切分多个任务后,发送给 Executor 节点并行计算,而能够并行计算的任务数量我们称之为并行度。这个数量可以在构建 RDD 时指定。记住,这里的并行执行的任务数量,并不是指的切分任务的数量,不要混淆了。

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("spark")
val sparkContext = new SparkContext(sparkConf)
val dataRDD: RDD[Int] = sparkContext.makeRDD(List(1,2,3,4), 4)
val fileRDD: RDD[String] = sparkContext.textFile("input", 2)
fileRDD.collect().foreach(println)
sparkContext.stop()

读取内存数据时,数据可以按照并行度的设定进行数据的分区操作,数据分区规则的Spark 核心源码如下:

def positions(length: Long, numSlices: Int): Iterator[(Int, Int)] = {
	(0 until numSlices).iterator.map { i =>
 		val start = ((i * length) / numSlices).toInt
 		val end = (((i + 1) * length) / numSlices).toInt(start, end)
 	}
}	

读取文件数据时,数据是按照 Hadoop 文件读取的规则进行切片分区,而切片规则和数据读取的规则有些差异,具体 Spark 核心源码如下

public InputSplit[] getSplits(JobConf job, int numSplits) throws IOException {
	long totalSize = 0; // compute total size
	for (FileStatus file: files) { // check we have valid files
		if (file.isDirectory()) {
			throw new IOException("Not a file: "+ file.getPath());
		}
		totalSize += file.getLen();
	}
	long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
	long minSize = Math.max(job.getLong(org.apache.hadoop.mapreduce.lib.input.
	FileInputFormat.SPLIT_MINSIZE, 1), minSplitSize);
	
	...
	
	for (FileStatus file: files) {
	
		...
	
		if (isSplitable(fs, path)) {
			long blockSize = file.getBlockSize();
			long splitSize = computeSplitSize(goalSize, minSize, blockSize);
			...
		}
		protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
			return Math.max(minSize, Math.min(goalSize, blockSize));
		}

③ RDD 转换算子

RDD 根据数据处理方式的不同将算子整体上分为 Value 类型、双 Value 类型和 Key-Value 类型

Value 类型

A、map

➢ 函数签名

def map[U: ClassTag](f: T => U): RDD[U]

➢ 函数说明

将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。

val dataRDD: RDD[Int] = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD1: RDD[Int] = dataRDD.map(
	num => {
		num * 2
    }
)
val dataRDD2: RDD[String] = dataRDD1.map(
	num => {
		"" + num
	}
)

❖ 小功能:从服务器日志数据 apache.log 中获取用户请求 URL 资源路径

B、mapPartitions

➢ 函数签名

def mapPartitions[U: ClassTag](
	f: Iterator[T] => Iterator[U],
	preservesPartitioning: Boolean = false): RDD[U]
)

➢ 函数说明
将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。

val dataRDD1: RDD[Int] = dataRDD.mapPartitions(
	datas => {
		datas.filter(_==2)
	}
)

❖ 小功能:获取每个数据分区的最大值

思考一个问题:map 和 mapPartitions 的区别?

➢ 数据处理角度

Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。

➢ 功能的角度

Map 算子主要目的将数据源中的数据进行转换和改变。但是不会减少或增多数据。MapPartitions 算子需要传递一个迭代器,返回一个迭代器,没有要求的元素的个数保持不变,所以可以增加或减少数据。

➢ 性能的角度

Map 算子因为类似于串行操作,所以性能比较低,而是 mapPartitions 算子类似于批处理,所以性能较高。但是 mapPartitions 算子会长时间占用内存,那么这样会导致内存可能不够用,出现内存溢出的错误。所以在内存有限的情况下,不推荐使用。使用 map 操作。

C、mapPartitionsWithIndex

➢ 函数签名

def mapPartitionsWithIndex[U: ClassTag](
	f: (Int, Iterator[T]) => Iterator[U],
	preservesPartitioning: Boolean = false): RDD[U]
 )

➢ 函数说明

将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。

val dataRDD1 = dataRDD.mapPartitionsWithIndex(
	(index, datas) => {
		datas.map(index, _)
	}
)

❖ 小功能:获取第二个数据分区的数据

D、flatMap

➢ 函数签名

def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

➢ 函数说明

将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射

val dataRDD = sparkContext.makeRDD(List(
	List(1,2),List(3,4)
),1)
val dataRDD1 = dataRDD.flatMap(
	list => list
)

❖ 小功能:将 List(List(1,2),3,List(4,5))进行扁平化操作

E、glom

➢ 函数签名

def glom(): RDD[Array[T]]

➢ 函数说明

将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变

val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4
),1)
val dataRDD1:RDD[Array[Int]] = dataRDD.glom()

❖ 小功能:计算所有分区最大值求和 (分区内取最大值,分区间最大值求和)

F、groupBy

➢ 函数签名

def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]

➢ 函数说明

将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。极限情况下,数据可能被分在同一个分区中一个组的数据在一个分区中,但是并不是说一个分区中只有一个组。

val dataRDD = sparkContext.makeRDD(List(1,2,3,4),1)
val dataRDD1 = dataRDD.groupBy(
	_%2
)

❖ 小功能:将 List(“Hello”, “hive”, “hbase”, “Hadoop”)根据单词首写字母进行分组。
❖ 小功能:从服务器日志数据 apache.log 中获取每个时间段访问量。
❖ 小功能:WordCount。

G、filter

➢ 函数签名

def filter(f: T => Boolean): RDD[T]

➢ 函数说明

将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。

val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4
),1)
val dataRDD1 = dataRDD.filter(_%2 == 0)

❖ 小功能:从服务器日志数据 apache.log 中获取 2015 年 5 月 17 日的请求路径

H、distinct

➢ 函数签名

def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

➢ 函数说明
将数据集中重复的数据去重

val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4,1,2
),1)
val dataRDD1 = dataRDD.distinct()
val dataRDD2 = dataRDD.distinct(2)

I、coalesce

➢ 函数签名

def coalesce(numPartitions: Int, shuffle: Boolean = false, partitionCoalescer: Option[PartitionCoalescer] = Option.empty) (implicit ord: Ordering[T] = null): RDD[T]

➢ 函数说明

根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率。当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本

val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4,1,2
),6)
val dataRDD1 = dataRDD.coalesce(2)

J、repartition

➢ 函数签名

def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]

➢ 函数说明

该操作内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的 RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。

val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4,1,2
),2)
val dataRDD1 = dataRDD.repartition(4)

K、sortBy

➢ 函数签名

def sortBy[K](f: (T) => K,ascending: Boolean = true, numPartitions: Int = this.partitions.length)(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]

➢ 函数说明

该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程

val dataRDD = sparkContext.makeRDD(List(
	1,2,3,4,1,2
),2)
val dataRDD1 = dataRDD.sortBy(num=>num, false, 4)
双 Value 类型

L、intersection

➢ 函数签名

def intersection(other: RDD[T]): RDD[T]

➢ 函数说明

对源 RDD 和参数 RDD 求交集后返回一个新的 RDD

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.intersection(dataRDD2)

M、union

➢ 函数签名

def union(other: RDD[T]): RDD[T]

➢ 函数说明
对源 RDD 和参数 RDD 求并集后返回一个新的 RDD

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.union(dataRDD2)

N、subtract

➢ 函数签名

def subtract(other: RDD[T]): RDD[T]

➢ 函数说明

以一个 RDD 元素为主,去除两个 RDD 中重复元素,将其他元素保留下来。求差集

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.subtract(dataRDD2)

O、zip

➢ 函数签名

def zip[U: ClassTag](other: RDD[U]): RDD[(T, U)]

➢ 函数说明

将两个 RDD 中的元素,以键值对的形式进行合并。其中,键值对中的 Key 为第 1 个 RDD 中的元素,Value 为第 2 个 RDD 中的相同位置的元素。

val dataRDD1 = sparkContext.makeRDD(List(1,2,3,4))
val dataRDD2 = sparkContext.makeRDD(List(3,4,5,6))
val dataRDD = dataRDD1.zip(dataRDD2)
Key - Value 类型

P、partitionBy

➢ 函数签名

def partitionBy(partitioner: Partitioner): RDD[(K, V)]

➢ 函数说明

将数据按照指定 Partitioner 重新进行分区。Spark 默认的分区器是 HashPartitioner

val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1,"aaa"),(2,"bbb"),(3,"ccc")),3)
import org.apache.spark.HashPartitioner
val rdd2: RDD[(Int, String)] = rdd.partitionBy(new HashPartitioner(2))

Q、reduceByKey

➢ 函数签名

def reduceByKey(func: (V, V) => V): RDD[(K, V)]
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)]

➢ 函数说明

可以将数据按照相同的 Key 对 Value 进行聚合

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.reduceByKey(_+_)
val dataRDD3 = dataRDD1.reduceByKey(_+_, 2)

R、groupByKey

➢ 函数签名

def groupByKey(): RDD[(K, Iterable[V])]
def groupByKey(numPartitions: Int): RDD[(K, Iterable[V])]
def groupByKey(partitioner: Partitioner): RDD[(K, Iterable[V])]

➢ 函数说明

将数据源的数据根据 key 对 value 进行分组

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.groupByKey()
val dataRDD3 = dataRDD1.groupByKey(2)
val dataRDD4 = dataRDD1.groupByKey(new HashPartitioner(2))

思考一个问题:reduceByKey 和 groupByKey 的区别?

从 shuffle 的角度:

reduceByKey 和 groupByKey 都存在 shuffle 的操作,但是 reduceByKey 可以在 shuffle 前对分区内相同 key 的数据进行预聚合(combine)功能,这样会减少落盘的数据量,而 groupByKey 只是进行分组,不存在数据量减少的问题,reduceByKey 性能比较高。

从功能的角度:

reduceByKey 其实包含分组和聚合的功能。GroupByKey 只能分组,不能聚合,所以在分组聚合的场合下,推荐使用 reduceByKey,如果仅仅是分组而不需要聚合。那么还是只能使用 groupByKey。

S、aggregateByKey

➢ 函数签名

def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U, combOp: (U, U) => U): RDD[(K, U)]

➢ 函数说明

将数据根据不同的规则进行分区内计算和分区间计算

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.aggregateByKey(0)(_+_,_+_)

❖ 取出每个分区内相同 key 的最大值然后分区间相加

// TODO : 取出每个分区内相同 key 的最大值然后分区间相加
// aggregateByKey 算子是函数柯里化,存在两个参数列表
// 1. 第一个参数列表中的参数表示初始值
// 2. 第二个参数列表中含有两个参数
// 2.1 第一个参数表示分区内的计算规则
// 2.2 第二个参数表示分区间的计算规则
val rdd = sc.makeRDD(List(
	("a",1),("a",2),("c",3),
	("b",4),("c",5),("c",6)
),2)
// 0:("a",1),("a",2),("c",3) => (a,10)(c,10)
// => (a,10)(b,10)(c,20)
// 1:("b",4),("c",5),("c",6) => (b,10)(c,10)
val resultRDD = rdd.aggregateByKey(10)(
	(x, y) => math.max(x,y),
	(x, y) => x + y
)
resultRDD.collect().foreach(println)

T、foldByKey

➢ 函数签名

def foldByKey(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]

➢ 函数说明

当分区内计算规则和分区间计算规则相同时,aggregateByKey 就可以简化为 foldByKey

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = dataRDD1.foldByKey(0)(_+_)

U、combineByKey

➢ 函数签名

def combineByKey[C](
	createCombiner: V => C,
	mergeValue: (C, V) => C,
	mergeCombiners: (C, C) => C): RDD[(K, C)]
)

➢ 函数说明

最通用的对 key-value 型 rdd 进行聚集操作的聚集函数 (aggregation function)。类似于 aggregate(),combineByKey() 允许用户返回值的类型与输入不一致。

小练习:将数据 List(("a", 88), ("b", 95), ("a", 91), ("b", 93), ("a", 95), ("b", 98)) 求每个 key 的平均值

val list: List[(String, Int)] = List(("a", 88), ("b", 95), ("a", 91), ("b", 93), ("a", 95), ("b", 98))
val input: RDD[(String, Int)] = sc.makeRDD(list, 2)
val combineRdd: RDD[(String, (Int, Int))] = input.combineByKey(
	(_, 1),
	(acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
	(acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
)

思考一个问题:reduceByKey、foldByKey、aggregateByKey、combineByKey 的区别?

  • reduceByKey: 相同 key 的第一个数据不进行任何计算,分区内和分区间计算规则相同

  • FoldByKey: 相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则相同

  • AggregateByKey:相同 key 的第一个数据和初始值进行分区内计算,分区内和分区间计算规则可以不相同

  • CombineByKey:当计算时,发现数据结构不满足要求时,可以让第一个数据转换结构。分区内和分区间计算规则不相同。

V、sortByKey

➢ 函数签名

def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length) : RDD[(K, V)]

➢ 函数说明

在一个(K,V)的 RDD 上调用,K 必须实现 Ordered 接口(特质),返回一个按照 key 进行排序的

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(true)
val sortRDD1: RDD[(String, Int)] = dataRDD1.sortByKey(false)

❖ 小功能:设置 key 为自定义类 User

W、join

➢ 函数签名

def join[W](other: RDD[(K, W)]): RDD[(K, (V, W))]

➢ 函数说明
在类型为 (K,V)(K,W) 的 RDD 上调用,返回一个相同 key 对应的所有元素连接在一起的 (K,(V,W)) 的 RDD

val rdd: RDD[(Int, String)] = sc.makeRDD(Array((1, "a"), (2, "b"), (3, "c")))
val rdd1: RDD[(Int, Int)] = sc.makeRDD(Array((1, 4), (2, 5), (3, 6)))
rdd.join(rdd1).collect().foreach(println)

X、leftOuterJoin

➢ 函数签名

def leftOuterJoin[W](other: RDD[(K, W)]): RDD[(K, (V, Option[W]))]

➢ 函数说明

类似于 SQL 语句的左外连接

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("b",2),("c",3)))
val rdd: RDD[(String, (Int, Option[Int]))] = dataRDD1.leftOuterJoin(dataRDD2)

Y、cogroup

➢ 函数签名

def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]

➢ 函数说明

在类型为 (K,V)(K,W) 的 RDD 上调用,返回一个 (K,(Iterable<V>,Iterable<W>)) 类型的 RDD

val dataRDD1 = sparkContext.makeRDD(List(("a",1),("a",2),("c",3)))
val dataRDD2 = sparkContext.makeRDD(List(("a",1),("c",2),("c",3)))
val value: RDD[(String, (Iterable[Int], Iterable[Int]))] = dataRDD1.cogroup(dataRDD2)

④ RDD 行动算子

A、reduce

➢ 函数签名

def reduce(f: (T, T) => T): T

➢ 函数说明

聚集 RDD 中的所有元素,先聚合分区内数据,再聚合分区间数据

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 聚合数据
val reduceResult: Int = rdd.reduce(_+_)

B、collect

➢ 函数签名

def collect(): Array[T]

➢ 函数说明

在驱动程序中,以数组 Array 的形式返回数据集的所有元素

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集数据到 Driver
rdd.collect().foreach(println)

C、count

➢ 函数签名

def count(): Long

➢ 函数说明

返回 RDD 中元素的个数

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val countResult: Long = rdd.count()

D、first

➢ 函数签名

def first(): T

➢ 函数说明

返回 RDD 中的第一个元素

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val firstResult: Int = rdd.first()
println(firstResult)

E、take

➢ 函数签名

def take(num: Int): Array[T]

➢ 函数说明

返回一个由 RDD 的前 n 个元素组成的数组

vval rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 返回 RDD 中元素的个数
val takeResult: Array[Int] = rdd.take(2)
println(takeResult.mkString(","))

F、takeOrdered

➢ 函数签名

def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T]

➢ 函数说明

返回该 RDD 排序后的前 n 个元素组成的数组

val rdd: RDD[Int] = sc.makeRDD(List(1,3,2,4))
// 返回 RDD 中元素的个数
val result: Array[Int] = rdd.takeOrdered(2)

G、aggregate

➢ 函数签名

def aggregate[U: ClassTag](zeroValue: U)(seqOp: (U, T) => U, combOp: (U, U) => U): U

➢ 函数说明

分区的数据通过初始值和分区内的数据进行聚合,然后再和初始值进行分区间的数据聚合

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4), 8)
// 将该 RDD 所有元素相加得到结果
//val result: Int = rdd.aggregate(0)(_ + _, _ + _)
val result: Int = rdd.aggregate(10)(_ + _, _ + _)

H、fold

➢ 函数签名

def fold(zeroValue: T)(op: (T, T) => T): T

➢ 函数说明

折叠操作,aggregate 的简化版操作

val rdd: RDD[Int] = sc.makeRDD(List(1, 2, 3, 4))
val foldResult: Int = rdd.fold(0)(_+_)

I、countByKey

➢ 函数签名

def countByKey(): Map[K, Long]

➢ 函数说明

统计每种 key 的个数

val rdd: RDD[(Int, String)] = sc.makeRDD(List((1, "a"), (1, "a"), (1, "a"), (2, "b"), (3, "c"), (3, "c")))
// 统计每种 key 的个数
val result: collection.Map[Int, Long] = rdd.countByKey()

J、save 相关算子

➢ 函数签名

def saveAsTextFile(path: String): Unit
def saveAsObjectFile(path: String): Unit
def saveAsSequenceFile(
 path: String,
 codec: Option[Class[_ <: CompressionCodec]] = None): Unit

➢ 函数说明

将数据保存到不同格式的文件中

// 保存成 Text 文件
rdd.saveAsTextFile("output")
// 序列化成对象保存到文件
rdd.saveAsObjectFile("output1")
// 保存成 Sequencefile 文件
rdd.map((_,1)).saveAsSequenceFile("output2")

K、foreach

➢ 函数签名

def foreach(f: T => Unit): Unit = withScope {
	val cleanF = sc.clean(f)
	sc.runJob(this, (iter: Iterator[T]) => iter.foreach(cleanF))
}

➢ 函数说明

分布式遍历 RDD 中的每一个元素,调用指定函数

val rdd: RDD[Int] = sc.makeRDD(List(1,2,3,4))
// 收集后打印
rdd.map(num=>num).collect().foreach(println)
println("****************")
// 分布式打印
rdd.foreach(println)

⑤ RDD 序列化

A、闭包检查

从计算的角度, 算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor 端执行。那么在 scala 的函数式编程中,就会导致算子内经常会用到算子外的数据,这样就形成了闭包的效果,如果使用的算子外的数据无法序列化,就意味着无法传值给 Executor 端执行,就会发生错误,所以需要在执行任务计算前,检测闭包内的对象是否可以进行序列化,这个操作我们称之为闭包检测。Scala2.12 版本后闭包编译方式发生了改变。

B、序列化方法和属性

从计算的角度, 算子以外的代码都是在 Driver 端执行, 算子里面的代码都是在 Executor 端执行,看如下代码:

object serializable02_function {
	def main(args: Array[String]): Unit = {
		//1.创建 SparkConf 并设置 App 名称
		val conf: SparkConf = new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")
		//2.创建 SparkContext,该对象是提交 Spark App 的入口
		val sc: SparkContext = new SparkContext(conf)
		//3.创建一个 RDD
		val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello spark", "hive", "fancy"))
		//3.1 创建一个 Search 对象
		val search = new Search("hello")
		//3.2 函数传递,打印:ERROR Task not serializable
		search.getMatch1(rdd).collect().foreach(println)
		//3.3 属性传递,打印:ERROR Task not serializable
		search.getMatch2(rdd).collect().foreach(println)
		//4.关闭连接
		sc.stop()
	 }
}
class Search(query:String) extends Serializable {
	def isMatch(s: String): Boolean = {
		s.contains(query)
	}
	// 函数序列化案例
	def getMatch1 (rdd: RDD[String]): RDD[String] = {
		//rdd.filter(this.isMatch)
		rdd.filter(isMatch)
	}
	// 属性序列化案例
	def getMatch2(rdd: RDD[String]): RDD[String] = {
		//rdd.filter(x => x.contains(this.query))
		rdd.filter(x => x.contains(query))
		//val q = query
		//rdd.filter(x => x.contains(q))
	}
}

C、Kryo 序列化框架

参考地址:https://github.com/EsotericSoftware/kryo

Java 的序列化能够序列化任何的类。但是比较重(字节多),序列化后,对象的提交也比较大。Spark 出于性能的考虑,Spark2.0 开始支持另外一种 Kryo 序列化机制。Kryo 速度是 Serializable 的 10 倍。当 RDD 在 Shuffle 数据的时候,简单数据类型、数组和字符串类型已经在 Spark 内部使用 Kryo 来序列化。

注意:即使使用 Kryo 序列化,也要继承 Serializable 接口。

object serializable_Kryo {
	def main(args: Array[String]): Unit = {
		val conf: SparkConf = new SparkConf()
			.setAppName("SerDemo")
			.setMaster("local[*]")
			// 替换默认的序列化机制
			.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
			// 注册需要使用 kryo 序列化的自定义类
			.registerKryoClasses(Array(classOf[Searcher]));
			
		val sc = new SparkContext(conf)
		val rdd: RDD[String] = sc.makeRDD(Array("hello world", "hello fancy", "fancy", "hahah"), 2)
		val searcher = new Searcher("hello")
		val result: RDD[String] = searcher.getMatchedRDD1(rdd)
		result.collect.foreach(println)
	}
}
case class Searcher(val query: String) {
	def isMatch(s: String) = {
		s.contains(query)
	}
	def getMatchedRDD1(rdd: RDD[String]) = {
		rdd.filter(isMatch)
	}
	def getMatchedRDD2(rdd: RDD[String]) = {
		val q = query
		rdd.filter(_.contains(q))
	}
}

⑥ RDD 依赖关系

A、RDD 血缘关系

RDD 只支持粗粒度转换,即在大量记录上执行的单个操作。将创建 RDD 的一系列 Lineage (血统) 记录下来,以便恢复丢失的分区。RDD 的 Lineage 会记录 RDD 的元数据信息和转换行为,当该 RDD 的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

val fileRDD: RDD[String] = sc.textFile("input/1.txt")
println(fileRDD.toDebugString)
println("----------------------")
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
println(wordRDD.toDebugString)
println("----------------------")
val mapRDD: RDD[(String, Int)] = wordRDD.map((_,1))
println(mapRDD.toDebugString)
println("----------------------")
val resultRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
println(resultRDD.toDebugString)
resultRDD.collect()

B、RDD 依赖关系

这里所谓的依赖关系,其实就是两个相邻 RDD 之间的关系

val sc: SparkContext = new SparkContext(conf)
val fileRDD: RDD[String] = sc.textFile("input/1.txt")
println(fileRDD.dependencies)
println("----------------------")
val wordRDD: RDD[String] = fileRDD.flatMap(_.split(" "))
println(wordRDD.dependencies)
println("----------------------")
val mapRDD: RDD[(String, Int)] = wordRDD.map((_,1))
println(mapRDD.dependencies)
println("----------------------")
val resultRDD: RDD[(String, Int)] = mapRDD.reduceByKey(_+_)
println(resultRDD.dependencies)
resultRDD.collect()

C、RDD 窄依赖

窄依赖表示每一个父(上游)RDD 的 Partition 最多被子(下游)RDD 的一个 Partition 使用,窄依赖我们形象的比喻为独生子女。

class OneToOneDependency[T](rdd: RDD[T]) extends NarrowDependency[T](rdd)

D、RDD 宽依赖

宽依赖表示同一个父(上游)RDD 的 Partition 被多个子(下游)RDD 的 Partition 依赖,会引起 Shuffle,总结:宽依赖我们形象的比喻为多生。

class ShuffleDependency[K: ClassTag, V: ClassTag, C: ClassTag](
 @transient private val _rdd: RDD[_ <: Product2[K, V]],
 val partitioner: Partitioner,
 val serializer: Serializer = SparkEnv.get.serializer,
 val keyOrdering: Option[Ordering[K]] = None,
 val aggregator: Option[Aggregator[K, V, C]] = None,
 val mapSideCombine: Boolean = false)
 extends Dependency[Product2[K, V]]

E、RDD 阶段划分

DAG(Directed Acyclic Graph)有向无环图是由点和线组成的拓扑图形,该图形具有方向,不会闭环。例如,DAG 记录了 RDD 的转换过程和任务的阶段。

在这里插入图片描述

F、RDD 阶段划分源码

try {
 // New stage creation may throw an exception if, for example, jobs are run on 
 // HadoopRDD whose underlying HDFS files have been deleted.
 finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
 case e: Exception =>
 logWarning("Creating new stage failed due to exception - job: " + jobId, e)
 listener.jobFailed(e)
 return
}
……
private def createResultStage(
 rdd: RDD[_],
 func: (TaskContext, Iterator[_]) => _,
 partitions: Array[Int],
 jobId: Int,
 callSite: CallSite): ResultStage = {
	val parents = getOrCreateParentStages(rdd, jobId)
	val id = nextStageId.getAndIncrement()
	val stage = new ResultStage(id, rdd, func, partitions, parents, jobId, callSite)
	stageIdToStage(id) = stage updateJobIdStageIdMaps(jobId, stage)
	stage
}
……
private def getOrCreateParentStages(rdd: RDD[_], firstJobId: Int): List[Stage] = {
	getShuffleDependencies(rdd).map { shuffleDep =>
 		getOrCreateShuffleMapStage(shuffleDep, firstJobId)
	}.toList
}
……
private[scheduler] def getShuffleDependencies(
	rdd: RDD[_]): HashSet[ShuffleDependency[_, _, _]] = {
		val parents = new HashSet[ShuffleDependency[_, _, _]]
		val visited = new HashSet[RDD[_]]
		val waitingForVisit = new Stack[RDD[_]]
		waitingForVisit.push(rdd)
		while (waitingForVisit.nonEmpty) {
 			val toVisit = waitingForVisit.pop()
 			if (!visited(toVisit)) {
 				visited += toVisit
 				toVisit.dependencies.foreach {
 				case shuffleDep: ShuffleDependency[_, _, _] => parents += shuffleDep
 				case dependency => waitingForVisit.push(dependency.rdd)
 			}
 		}
	}
	parents
}

G、RDD 任务划分

RDD 任务切分中间分为:Application、Job、Stage 和 Task

  • Application:初始化一个 SparkContext 即生成一个 Application;
  • Job:一个 Action 算子就会生成一个 Job;
  • Stage:Stage 等于宽依赖(ShuffleDependency)的个数加 1;
  • Task:一个 Stage 阶段中,最后一个 RDD 的分区个数就是 Task 的个数。

注意:Application -> Job -> Stage -> Task 每一层都是 1 对 n 的关系。

在这里插入图片描述
H、RDD 任务划分源码

val tasks: Seq[Task[_]] = try {
	stage match {
		case stage: ShuffleMapStage =>
		partitionsToCompute.map { id =>
		val locs = taskIdToLocations(id)
		val part = stage.rdd.partitions(id)
		new ShuffleMapTask(stage.id, stage.latestInfo.attemptId,
		taskBinary, part, locs, stage.latestInfo.taskMetrics, properties,
		Option(jobId),
		Option(sc.applicationId), sc.applicationAttemptId)
    }
    case stage: ResultStage =>  partitionsToCompute.map { 
	 	id => val p: Int = stage.partitions(id)
	 	val part = stage.rdd.partitions(p)
	 	val locs = taskIdToLocations(id)
	 	new ResultTask(stage.id, stage.latestInfo.attemptId, taskBinary, part, locs, id, properties, stage.latestInfo.taskMetrics,Option(jobId), Option(sc.applicationId), sc.applicationAttemptId)
	}
 }
……
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
……
override def findMissingPartitions(): Seq[Int] = {
	mapOutputTrackerMaster
	 .findMissingPartitions(shuffleDep.shuffleId)
	 .getOrElse(0 until numPartitions)
}

⑦ RDD 持久化

A、RDD Cache 缓存

RDD 通过 Cache 或者 Persist 方法将前面的计算结果缓存,默认情况下会把数据以缓存在 JVM 的堆内存中。但是并不是这两个方法被调用时立即缓存,而是触发后面的 action 算子时,该 RDD 将会被缓存在计算节点的内存中,并供后面重用。

// cache 操作会增加血缘关系,不改变原有的血缘关系
println(wordToOneRdd.toDebugString)
// 数据缓存。
wordToOneRdd.cache()
// 可以更改存储级别
//mapRdd.persist(StorageLevel.MEMORY_AND_DISK_2) 存储级别
object StorageLevel {
	val NONE = new StorageLevel(false, false, false, false)
	val DISK_ONLY = new StorageLevel(true, false, false, false)
	val DISK_ONLY_2 = new StorageLevel(true, false, false, false, 2)
	val MEMORY_ONLY = new StorageLevel(false, true, false, true)
	val MEMORY_ONLY_2 = new StorageLevel(false, true, false, true, 2)
	val MEMORY_ONLY_SER = new StorageLevel(false, true, false, false)
	val MEMORY_ONLY_SER_2 = new StorageLevel(false, true, false, false, 2)
	val MEMORY_AND_DISK = new StorageLevel(true, true, false, true)
	val MEMORY_AND_DISK_2 = new StorageLevel(true, true, false, true, 2)
	val MEMORY_AND_DISK_SER = new StorageLevel(true, true, false, false)
	val MEMORY_AND_DISK_SER_2 = new StorageLevel(true, true, false, false, 2)
	val OFF_HEAP = new StorageLevel(true, true, true, false, 1)

在这里插入图片描述

缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD 的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于 RDD 的一系列转换,丢失的数据会被重算,由于 RDD 的各个 Partition 是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部 Partition。

Spark 会自动对一些 Shuffle 操作的中间数据做持久化操作(比如:reduceByKey)。这样做的目的是为了当一个节点 Shuffle 失败了避免重新计算整个输入。但是,在实际使用的时候,如果想重用数据,仍然建议调用 persist 或 cache。

B、RDD CheckPoint 检查点

所谓的检查点其实就是通过将 RDD 中间结果写入磁盘,由于血缘依赖过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果检查点之后有节点出现问题,可以从检查点开始重做血缘,减少了开销。对 RDD 进行 checkpoint 操作并不会马上被执行,必须执行 Action 操作才能触发。

// 设置检查点路径
sc.setCheckpointDir("./checkpoint1")
// 创建一个 RDD,读取指定位置文件:hello atguigu atguigu
val lineRdd: RDD[String] = sc.textFile("input/1.txt")
// 业务逻辑
val wordRdd: RDD[String] = lineRdd.flatMap(line => line.split(" "))
val wordToOneRdd: RDD[(String, Long)] = wordRdd.map {
	word => {
		(word, System.currentTimeMillis())
	}
}
// 增加缓存,避免再重新跑一个 job 做 checkpoint
wordToOneRdd.cache()
// 数据检查点:针对 wordToOneRdd 做检查点计算
wordToOneRdd.checkpoint()
// 触发执行逻辑
wordToOneRdd.collect().foreach(println)

C、缓存和检查点区别

Cache 缓存只是将数据保存起来,不切断血缘依赖。Checkpoint 检查点切断血缘依赖。

Cache 缓存的数据通常存储在磁盘、内存等地方,可靠性低。Checkpoint 的数据通常存储在 HDFS 等容错、高可用的文件系统,可靠性高。

建议对 checkpoint() 的 RDD 使用 Cache 缓存,这样 checkpoint 的 job 只需从 Cache 缓存中读取数据即可,否则需要再从头计算一次 RDD。

⑧ RDD 分区器

Spark 目前支持 Hash 分区和 Range 分区,和用户自定义分区。Hash 分区为当前的默认分区。分区器直接决定了 RDD 中分区的个数、RDD 中每条数据经过 Shuffle 后进入哪个分区,进而决定了 Reduce 的个数。

➢ 只有 Key-Value 类型的 RDD 才有分区器,非 Key-Value 类型的 RDD 分区的值是 None

➢ 每个 RDD 的分区 ID 范围:0 ~ (numPartitions - 1),决定这个值是属于那个分区的。

A、Hash 分区:对于给定的 key,计算其 hashCode,并除以分区个数取余

class HashPartitioner(partitions: Int) extends Partitioner {
 require(partitions >= 0, s"Number of partitions ($partitions) cannot be negative.")
 def numPartitions: Int = partitions
 def getPartition(key: Any): Int = key match {
 	case null => 0
 	case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
 }
 override def equals(other: Any): Boolean = other match {
 	case h: HashPartitioner =>  h.numPartitions == numPartitions
 	case _ => false
 }
 override def hashCode: Int = numPartitions
}

B、Range 分区:将一定范围内的数据映射到一个分区中,尽量保证每个分区数据均匀,而且分区间有序

class RangePartitioner[K : Ordering : ClassTag, V](
 partitions: Int,
 rdd: RDD[_ <: Product2[K, V]],
 private var ascending: Boolean = true) extends Partitioner {
	 // We allow partitions = 0, which happens when sorting an empty RDD under the default settings.
	 require(partitions >= 0, s"Number of partitions cannot be negative but found $partitions.")
	 private var ordering = implicitly[Ordering[K]]
	 // An array of upper bounds for the first (partitions - 1) partitions
	 private var rangeBounds: Array[K] = {
	 ...
 }
 def numPartitions: Int = rangeBounds.length + 1
 private var binarySearch: ((Array[K], K) => Int) = CollectionsUtils.makeBinarySearch[K]
	  def getPartition(key: Any): Int = {
		 val k = key.asInstanceOf[K]
		 var partition = 0
		 if (rangeBounds.length <= 128) {
			 // If we have less than 128 partitions naive search
			 while (partition < rangeBounds.length && ordering.gt(k, rangeBounds(partition))) {
				 partition += 1
		 	 }
		 } else {
			 // Determine which binary search method to use only once.
		 	partition = binarySearch(rangeBounds, k)
			 // binarySearch either returns the match location or -[insertion point]-1
			 if (partition < 0) {
				 partition = -partition-1
			 }
			 if (partition > rangeBounds.length) {
			 	partition = rangeBounds.length
			 }
		 }
		 if (ascending) {
			 partition
		 } else {
			 rangeBounds.length - partition
		 }
	 }
	 override def equals(other: Any): Boolean = other match {
	 ...
	 }
	 override def hashCode(): Int = {
	 	...
	 }
	 @throws(classOf[IOException])
	 private def writeObject(out: ObjectOutputStream): Unit = Utils.tryOrIOException {
	 	...
	 }
	 @throws(classOf[IOException])
	 private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException {
		...
	 }
}

⑨ RDD 文件读取与保存

Spark 的数据读取及数据保存可以从两个维度来作区分:文件格式以及文件系统。

文件格式分为:text 文件、csv 文件、sequence 文件以及 Object 文件;
文件系统分为:本地文件系统、HDFS、HBASE 以及数据库。

➢ text 文件

// 读取输入文件
val inputRDD: RDD[String] = sc.textFile("input/1.txt")
// 保存数据
inputRDD.saveAsTextFile("output")

➢ sequence 文件

SequenceFile 文件是 Hadoop 用来存储二进制形式的 key-value 对而设计的一种平面文件(Flat File)。在SparkContext 中,可以调用 sequenceFile[keyClass, valueClass](path)

// 保存数据为 SequenceFile
dataRDD.saveAsSequenceFile("output")
// 读取 SequenceFile 文件
sc.sequenceFile[Int,Int]("output").collect().foreach(println)

➢ object 对象文件
对象文件是将对象序列化后保存的文件,采用 Java 的序列化机制。可以通过 objectFile[T:ClassTag](path)函数接收一个路径,读取对象文件,返回对应的 RDD,也可以通过调用 saveAsObjectFile()实现对对象文件的输出。因为是序列化所以要指定类型。

// 保存数据
dataRDD.saveAsObjectFile("output")
// 读取数据
sc.objectFile[Int]("output").collect().foreach(println)

二、累加器

1. 实现原理

累加器用来把 Executor 端变量信息聚合到 Driver 端。在 Driver 程序中定义的变量,在 Executor 端的每个 Task 都会得到这个变量的一份新的副本,每个 task 更新这些副本的值后,传回 Driver 端进行 merge。

2. 基础编程

① 系统累加器

val rdd = sc.makeRDD(List(1,2,3,4,5))
// 声明累加器
var sum = sc.longAccumulator("sum");
	rdd.foreach(
	 num => {
		 // 使用累加器
		 sum.add(num)
	 }
)
// 获取累加器的值
println("sum = " + sum.value)

② 自定义累加器

// 自定义累加器
// 1. 继承 AccumulatorV2,并设定泛型
// 2. 重写累加器的抽象方法
class WordCountAccumulator extends AccumulatorV2[String, mutable.Map[String, Long]]{
	var map : mutable.Map[String, Long] = mutable.Map()
	// 累加器是否为初始状态
	override def isZero: Boolean = {
		map.isEmpty
	}
	// 复制累加器
	override def copy(): AccumulatorV2[String, mutable.Map[String, Long]] = {
		new WordCountAccumulator
	}
	// 重置累加器
	override def reset(): Unit = {
		map.clear()
	}
	// 向累加器中增加数据 (In)
	override def add(word: String): Unit = {
		// 查询 map 中是否存在相同的单词
		// 如果有相同的单词,那么单词的数量加 1
		// 如果没有相同的单词,那么在 map 中增加这个单词
		map(word) = map.getOrElse(word, 0L) + 1L
	}

	// 合并累加器
	override def merge(other: AccumulatorV2[String, mutable.Map[String, Long]]):Unit = {
		val map1 = map
		val map2 = other.value
		// 两个 Map 的合并
		map = map1.foldLeft(map2)(
			(innerMap, kv) => {
				innerMap(kv._1) = innerMap.getOrElse(kv._1, 0L) + kv._2
		 	innerMap
			}	
		)
	}
	// 返回累加器的结果 (Out)
	override def value: mutable.Map[String, Long] = map
}

三、广播变量

1. 实现原理

广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个 Spark 操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,广播变量用起来都很顺手。在多个并行操作中使用同一个变量,但是 Spark 会为每个任务分别发送。

2. 基础编程

val rdd1 = sc.makeRDD(List( ("a",1), ("b", 2), ("c", 3), ("d", 4) ),4)
val list = List( ("a",4), ("b", 5), ("c", 6), ("d", 7) )
// 声明广播变量
val broadcast: Broadcast[List[(String, Int)]] = sc.broadcast(list)
val resultRDD: RDD[(String, (Int, Int))] = rdd1.map {
	case (key, num) => {
		var num2 = 0
		// 使用广播变量
		for ((k, v) <- broadcast.value) {
			if (k == key) {
				num2 = v
			}
		}
		(key, (num, num2))
	}
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

在森林中麋了鹿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值