- 博客(23)
- 问答 (1)
- 收藏
- 关注
原创 构建神经网络如何标记数据集
一、环境准备:anoconda prompt1、打开Anaconda Prompt 首先创建一个用于标注数据的py35单独环境名为label的环境,当然也可以用 Anaconda Navigator 界面程序来创建。conda create -- name=label python=3.82、查看创建环境是否成功并激活环境activate label3、添加镜像源下载并安装Pyqt5和labelimg,这里使用豆瓣源pip install pyqt5 -i https://pypi.doub
2022-11-21 22:01:46 1212
原创 表面缺陷检测数据集汇总及其相关项目推荐
https://mp.weixin.qq.com/s?__biz=MzI5MDUyMDIxNA==&mid=2247498632&idx=2&sn=a39387b9c15794393eb6e2c9561616cf
2022-11-21 22:00:45 299
原创 图像增强总结
非线性变换------对数变换完成图像灰度级的扩展或者压缩。线性变换------可以应用在由于照明不足,图像对比度比较低的情况中,通过分段的线性变换函数,来对图像对比度进行拉伸。加法运算------对于有噪声的图像,通过图像多张叠加求平均,可以对图像进行降噪。减法运算------图像相减常用于医学图像处理来消除背景。乘法运算------获取对图像感兴趣的部分,保留感兴趣区域。频率域高通滤波-----把低频图像平滑的区域去掉。直方图均衡------改善图像亮度和对比度。均值滤波------去除图像高斯噪声。
2022-11-21 21:55:42 154
原创 得到图像灰度共生矩阵并保存为excel
将灰度共生矩阵保存为excel参考链接:https://blog.csdn.net/shammy_feng/article/details/124149896?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522166856309316782412517692%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=166856309316782412517
2022-11-21 21:46:14 321 1
原创 SQL学习笔记
一、SQL概述1、数据库的概念DB数据库(database):存储数据的“仓库”。它保存了一系列有组织的数据DBMS数据库管理系统(Database Management System)。又称数据库软件(产品)数据库是通过DBMS创建和操作的容。常见的数据库管理系统:MySOL、Oracle、DB2、SqlSeverSQL结构化查询语言(Structure Query Language):专门用来与数据库通信的语言SQL的优点不是某个特定数据库供应商专有的语言,几乎所有DBMS都支持S
2022-10-09 22:42:15 343
原创 SQL学习笔记:DQL(Data Query Language):
1、基础查询语法:`SELECT 要查询的东西 FROM 表名;特点:① 通过select查询完的结果 ,是一个虚拟的表格,不是真实存在② 要查询的东西 可以是常量值、可以是表达式、可以是字段、可以是函数1.打开数据库:USE myemployees;2.查询表中的单个字段:SELECT salary FROM employees;3.查新表中的多个字段:SELECT last_name,salary,email FROM employees;4.查询表中的所有字段;-方
2022-10-09 22:40:45 415 1
原创 SQL学习笔记五:DQL(Data Query Language):分组查询、多表连接查询、子查询
文章目录六、分组查询1.简单的分组2、可以实现分组前的筛选3、分组后筛选4.添加排序5.按多个字段分组练习七、多表连接查询一、sql92标准1、等值连接2、为表起别名5、可以加分组6、可以加排序7、可以实现三表连接?3、自连接八、子查询六、分组查询语法:select 查询列表from 表【where 筛选条件】group by 分组的字段【order by 排序的字段】;特点:1、和分组函数一同查询的字段必须是group by后出现的字段2、筛选分为两类:分组前筛选和分组后筛选
2022-10-09 22:40:26 235
原创 SQL学习笔记四:DQL(Data Query Language):常见函数:单行函数、分组函数
文章目录四、常见函数1、单行函数(1)字符函数:① length( ) :获取参数值的字节个数② concat() 拼接字符串③ upper()转换成大写④ lower()转换成小写⑤ substr ()/substring()截取子串⑥ instr ()返回子串第一次出现的索引,如果找不到返回0⑦ trim()去左右边空格⑦ lpad ()用指定的字符实现左填充指定长度⑧ rpad ()用指定的字符实现右填充指定长度⑨ replace() 替换(2)数学函数① round ()四舍五入② rand (
2022-10-09 22:39:57 214
原创 《神经网络与深度学习》学习笔记——第二章 机器学习概述
文章目录一、机器学习的三个基本要素1.1、模型1.2、学习准则1.2.1 损失函数0-1损失函数平方损失函数交叉熵损失函数hinge损失函数1.2.2 风险最小化准则经验风险最小化结构风险最小化1.3、优化算法梯度下降法提前停止随机梯度下降法小批量梯度下降法一、机器学习的三个基本要素1.1、模型线性模型非线性模型1.2、学习准则模型f(x;θ)的好坏可以通过期望风险R(θ)(损失函数的期望) 来衡量1.2.1 损失函数损失函数是一个非负实数函数,用来量化模型预测和真实标签之间的差.
2022-10-09 22:38:48 142
原创 SQL学习笔记三:DQL(Data Query Language):基础、条件、排序查询
文章目录一、基础查询1.打开数据库2.查询表中的单个字段3.查新表中的多个字段4.查询表中的所有字段5.查询常量值6.查询表达式7.查询函数8.起别名9.去重DISTINCT10. +号的作用:CONCAT11.显示表的结构DESC二、条件查询1.条件表达式:条件运算符: `> 、<、 >=、 <=、 =、 !=、 <>`2.逻辑表达式:逻辑运算符:`and(&&)、or(||)、not(!)`3.模糊查询:`like、between and、in、is
2021-06-19 09:21:53 140
原创 SQL学习笔记二:MySql数据库的使用
文章目录1、MySQL语法规范2、MySQL常用语句3、SQL的语言分类1、MySQL语法规范1.不区分大小写,但建议关键字大写,表名、列名小写2.每条命令最好用分号结尾3.每条命令根据需要,可以进行缩进 或换行4.注释单行注释:#注释文字单行注释:-- 注释文字多行注释:/* 注释文字 */2、MySQL常用语句查找自己MySQL的版本:方法一:在MySQL中输入命令:select version();方法二:在cmd中输入命令:mysql --version查看当前所有
2021-06-11 10:52:33 139 2
原创 SQL学习笔记一:概述、安装和环境配置
文章目录一、SQL概述1、数据库的概念2、mysql的安装、卸载、配置等一、SQL概述1、数据库的概念DB数据库(database):存储数据的“仓库”。它保存了一系列有组织的数据DBMS数据库管理系统(Database Management System)。又称数据库软件(产品)数据库是通过DBMS创建和操作的容。常见的数据库管理系统:MySOL、Oracle、DB2、SqlSeverSQL结构化查询语言(Structure Query Language):专门用来与数据库通信的语言S
2021-06-11 10:47:35 183 1
转载 图像处理:图像读写基本操作
版权声明:本文为CSDN博主「Asia-Lee」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:https://blog.csdn.net/asialee_bird/article/details/109463084 目录 一、图像基础 二、图像基本操作 1、图像数据读取与写入 2、视频数据读取 3、图像颜色通道提取与合并 4、图像边界填充 5、图像融合及
2021-06-02 17:38:49 1709
原创 《神经网络与深度学习》学习笔记——第一章 绪论
一、机器学习机器学习模型一般会包含以下几个步骤:数据预处理:图像音频去噪、文本去除停用词等。特征提取:从原始数据中提取有效的特征。如在图像分类中,提取边缘、尺度不变特征变换等。特征转换:对特征进行一定的加工,比如升维、降维。常用的特征转换方法有:主成分分析、线性判别分析等。预测:学习一个函数并预测。二、表示(特征)学习自动地学习出有效地特征,并提高最终机器学习模型的性能。表示特征的方式:局部表示和分布式表示①: 局部表示:one-hot向量形式。优点:离散的表示方式有很好的解释
2021-06-02 17:28:47 275
图像处理:1、如何判断一张图像中是否有噪声,如果有怎么确定该噪声类型。
2021-05-22
TA创建的收藏夹 TA关注的收藏夹
TA关注的人