力扣 88. 合并两个有序数组
题目
给你两个按 非递减顺序 排列的整数数组 nums1
和 nums2
,另有两个整数 m
和 n
,分别表示 nums1
和 nums2
中的元素数目。
请你 合并 nums2
到 nums1
中,使合并后的数组同样按 非递减顺序 排列。
**注意:**最终,合并后数组不应由函数返回,而是存储在数组 nums1
中。为了应对这种情况,nums1
的初始长度为 m + n
,其中前 m
个元素表示应合并的元素,后 n
个元素为 0
,应忽略。nums2
的长度为 n
。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
**进阶:**你可以设计实现一个时间复杂度为 O(m + n)
的算法解决此问题吗?
解
- 快排
- 倒序遍历插入
快排
- 时间复杂度
O((m + n)log(m + n))
- 空间复杂度
O(m + n)
/**
* @param {number[]} nums1
* @param {number} m
* @param {number[]} nums2
* @param {number} n
* @return {void} Do not return anything, modify nums1 in-place instead.
*/
var merge = function(nums1, m, nums2, n) {
nums1.splice(m, nums1.length - m, ...nums2);
nums1.sort((a, b) => a - b);
}
倒序遍历
- 时间复杂度
O(m + n)
- 空间复杂度
O(m + n)
/**
* @param {number[]} nums1
* @param {number} m
* @param {number[]} nums2
* @param {number} n
* @return {void} Do not return anything, modify nums1 in-place instead.
*/
var merge = function(nums1, m, nums2, n) {
let i = m - 1, j = n - 1, k = m + n - 1;
while(i >= 0 || j >= 0) {
if(i < 0) nums1[k--] = nums2[j--];
else if(j < 0) nums1[k--] = nums1[i--];
else if(nums1[i] < nums2[j]) nums1[k--] = nums2[j--];
else nums1[k--] = nums1[i--];
}
}