整数分块

先来看一个问题

\sum _{i=0}^n\lfloor \frac n i\rfloor

解决这个问题显然可以通过暴力的方式解决,复杂度为O(n),整数分块可在O(\sqrt n)的复杂度内完成,这里不给出证明。

思路是这样子的,由于n/i在某些区间中式相等的,可将这些部分合并计算。这里有个结论设n/i相等的值的区间左端点为l,则右端点r=n/(n/l)。可以看一个例子:设n=6,当i=1时,l=1,r=6/(6/1)=1;当i=2时,l=2,r=6/(6/2)=2;当i=3时,l=3,r=6/(6/3)=3,当i=4时,l=4,r=6/(6/4)=6。

代码:

for(int l=1,ans=0;l<=n;l=r+1){
    r=n/(n/l);
    ans+=(r-l+1)*(n/l);
}

再来看这样一个问题

\sum_{i=1}^na[i]\lfloor \frac n i\rfloor

数据量较小时,可以直接暴力求解,但当数据量较大,且有多次询问时,就需要用到整数分块来求解,乍一看好像不怎么好用。因为整数分块是将n/i一样的值放在一起直接计算,但是在这个式子中,即使n/i的值值相等,a[i]的值也不相等,普通计算方法累加这些值,每个a[i]都要遍历,复杂度仍为O(n)。所以现在就需要想办法快速计算出某一个区间内a[i]的和,这不就是前缀和吗。问题就变成了一次O(n)预处理,每次询问的复杂度为O(\sqrt n),如果修改频繁用树状数组维护前缀和即可。

代码:

for(int i=1;i<=n;i++)
    sum[i]=sum[i-1]+a[i];
for(int l=1,ans=0;l<=n;l=r+1){
    r=n/(n/l);
    ans+=(sum[r]-sum[l-1])*(n/l);
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值