前言
今天现场学了powershell给朋友写了个自动备份,微软文档是真的shit,不仅自相矛盾很多,日志也经常出现过时,和现版本对不上的情况,当时替亲戚看vbs的时候就体会到了,写的非常的简略,很怪异,不像是正规语言的文档,甚至matlab和r都不如。很多高级功能不是靠文档日志,而是社区的人看底层代码和日常经验试出来的,而这非常容易过时和出错,像vbs,spss,r,matlab这种想看底层实现并不是那么容易的事情,微软又多又杂的命令/脚本就更是这样。文档中意义不明的古怪语言也非常多(包括文字和代码)。不过到现在这种程度想修正...反正我是管理者我不是很愿意出钱让人修...这东西估计自己家工程师都不是很明白。
小知识点
emplace_back()
vector的c++11更新,这个实现是直接在内存块后面新建一个空间进行置入的,而不是push_back()的新建一个空间,然后将其复制到对应内存块后的旧有实现,如果空间足够,自然效率更高。
~和!
~是正经按位取反,而!是逻辑反,就是非0取0,0取1.
E-Tree Xor
大意:有一颗树,只记得每个节点值的范围和两个节点间的异或关系,求可能的树有多少颗。(正整数)
看到本题的第一印象是集合相交,也就是求每个节点范围的交集,而链接这个范围的就是这个异或关系。
然后看到那个开的超级大的数字,30次方和2,考虑写成2进制形式,并计算30次方为10次方,利用longlong/int 64存(不只有一个30的,别上当)。
有了大概的概念后便可以开始解题了,本题是线段树优化的暴力。容易想到一个性质:任意值都是这个值本身,因此将0带入一个较小的集合/1位置的集合,bfs所有点,得到一个集合。然后考虑到0就是这个集合本身的替代,因此将a异或集合中的值即可。
但是异或形成的数集不是连续的,因此必须搞定所有的点才行。其实搞到这里是有点失望的,之后确实就是所有的点都老老实实的过了一遍,之后就只有线段树一个优化了,但本人才疏学浅,实在也没想到甚么好方法...看一下pro的代码吧。
# include <bits/stdc++.h>
# define ll long long
# define db double
# define ld long double
# define pb push_back
# define fir first
# define sec second
# define rep(i, l, r) for (int i = l; i <= r; i++)
# define per(i, r, l) for (int i = r; i >= l; i--)
using namespace std;
typedef pair <int, int> P;
const int N = 200010, M = 1 << 30, K = 6000010;
int read() {
int x = 0; char c = getchar(), flag = '+';
while (!isdigit(c)) flag = c, c = getchar();
while (isdigit(c)) x = x * 10 + c - '0', c = getchar();
return flag == '-' ? -x : x;
}//快读
struct node {int to, next, w; } ed[N];
int head[N], sz, l[N], r[N], rt, ksj, sum[K], ls[K], rs[K], segtot;
void addEdge(int from, int to, int w) {
ed[++sz].to = to;
ed[sz].next = head[from];
ed[sz].w = w;
head[from] = sz;
}//前向星
void up(int root) { sum[root] = sum[ls[root]] + sum[rs[root]]; }//
void update(int &root, int l, int r, int x, int y, int bit) {
//cout << l << ' ' << r << ' ' << x << ' ' << y << endl;
if (x > y) return;
//if (y < 0) exit(0);
if (!root) root = ++segtot;//定位,用地址这招挺巧妙的
if (r - l + 1 == sum[root]) return;
if (x <= l && y >= r) {
sum[root] = r - l + 1;
return;
}
int mid = l + r >> 1;
if (x <= mid) {
if ((ksj >> bit) & 1) update(rs[root], l, mid, x, y, bit - 1);
else update(ls[root], l, mid, x, y, bit - 1);
}
if (y > mid) {
if ((ksj >> bit) & 1) update(ls[root], mid + 1, r, x, y, bit - 1);
else update(rs[root], mid + 1, r, x, y, bit - 1);
}
up(root);
}//更新
void solve(int u, int ff, int k) {
ksj = k;
update(rt, 0, M - 1, 0, l[u] - 1, 29);
update(rt, 0, M - 1, r[u] + 1, M - 1, 29);
for (int i = head[u]; i; i = ed[i].next) {
int v = ed[i].to;
if (v == ff) continue;
solve(v, u, k ^ ed[i].w);
}
}
int main() {
int n = read();
rep (i, 1, n) l[i] = read(), r[i] = read();
rep (i, 1, n - 1) {
int u = read(), v = read(), w = read();
addEdge(u, v, w);
addEdge(v, u, w);
}
solve(1, 0, 0);
cout << M - sum[rt];
return 0;
}
/* by DT_Kang */