2021-01-23

这篇博客介绍了如何运用二分法解决一个关于蛋糕切割的问题,确保一次性切割能满足分配需求。代码示例中展示了在升序序列中应用`upper_bound`和`lower_bound`函数的方法,并在循环中调整精度避免死循环。此外,还涉及了浮点数的比较和处理技巧,以确保找到精确解。
摘要由CSDN通过智能技术生成

1-22二分法

一.1:while(l<r)时
l=mid的时候,mid=(l+r+1)>>1;r=mid-1,是找最右边符合条件的
r=mid的时候,mid=(r+l)>>1;l=mid+1;是在最左边符合条件的
不然就会进入死循环,从而超时
这种情况都是会把logn取满的;
2.在序列是升序的情况下:
upper_bound(start,last,n):返回的是被查序列中第一个大于n的指针;
lower_bound(start,last,n):返回的是查序列中第一个大于等于n的指针
在序列是降序的情况下:
lower_bound(start,last,n,greater()) :返回第一个小于等于n的地址
upper_bound(start,last,n,greater()) :返回第一个小于n的地址

接下来来一道带精度的题目,基本上是一个模板
题目poj-3122
通过审题可以知道蛋糕只能一次性切好,不能由几个小的拼成一块给一个人

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
using namespace std;
const double PI = acos(-1.0);
const int MAX_N = 2e6 + 5;
const double eps = 1e-6;
double a[MAX_N];
int n, m;
int check(double x) {
	int num = 0;
	for (int i = 1; i <= n; i++) {
		num += (int)(a[i] * a[i] * PI / x);
	}
	if (num >= m + 1)return 1;
	return 0;
}
int main() {
	int t;
	cin >> t;
	while (t--) {
		scanf("%d%d", &n, &m);
		for (int i = 1; i <= n; i++) {
			scanf("%lf", &a[i]);
		}
		sort(a + 1, a + 1 + n);
		double l = 0;
		double r = PI * a[n] * a[n];
		double ans = 0;
		while (r-l>eps) {//单纯地用于调整精度用
			double mid = (l + r) / 2;//位运算只适用与整数
			if (check(mid)) {
				l = mid;
				ans = mid;
			}
			else r = mid;//因为不是整数是双精度实数,所以不需要-1
		}
		printf("%.4lf\n", ans);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值