1-22二分法
一.1:while(l<r)时
l=mid的时候,mid=(l+r+1)>>1;r=mid-1,是找最右边符合条件的
r=mid的时候,mid=(r+l)>>1;l=mid+1;是在最左边符合条件的
不然就会进入死循环,从而超时
这种情况都是会把logn取满的;
2.在序列是升序的情况下:
upper_bound(start,last,n):返回的是被查序列中第一个大于n的指针;
lower_bound(start,last,n):返回的是查序列中第一个大于等于n的指针
在序列是降序的情况下:
lower_bound(start,last,n,greater()) :返回第一个小于等于n的地址
upper_bound(start,last,n,greater()) :返回第一个小于n的地址
接下来来一道带精度的题目,基本上是一个模板
题目poj-3122
通过审题可以知道蛋糕只能一次性切好,不能由几个小的拼成一块给一个人
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
using namespace std;
const double PI = acos(-1.0);
const int MAX_N = 2e6 + 5;
const double eps = 1e-6;
double a[MAX_N];
int n, m;
int check(double x) {
int num = 0;
for (int i = 1; i <= n; i++) {
num += (int)(a[i] * a[i] * PI / x);
}
if (num >= m + 1)return 1;
return 0;
}
int main() {
int t;
cin >> t;
while (t--) {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) {
scanf("%lf", &a[i]);
}
sort(a + 1, a + 1 + n);
double l = 0;
double r = PI * a[n] * a[n];
double ans = 0;
while (r-l>eps) {//单纯地用于调整精度用
double mid = (l + r) / 2;//位运算只适用与整数
if (check(mid)) {
l = mid;
ans = mid;
}
else r = mid;//因为不是整数是双精度实数,所以不需要-1
}
printf("%.4lf\n", ans);
}
return 0;
}