浮点数的规格化

浮点数在教材和IEEE754标准中有不同的表示方法。在规格化表达式中,E是带符号位的指数,M的绝对值在1/2到1之间。IEEE754规定指数真实值为E减去偏移量,如单精度E偏移量为127,双精度为1023,确保E为正无符号整数。尾数M在IEEE754中只表示小数部分,始终为正,且默认前导数字为1,不包含在存储中。教材中M的符号则取决于实际数值。
摘要由CSDN通过智能技术生成

教材中的浮点数规格化表达式:

69048fac06884cc089166e734748c32c.jpg

 其中E带符号位,M的绝对值在1/2到1之间

IEEE754中的浮点数规格化:

775631d87fee48bb988fa75cb0e5aed5.jpg

 解释:

1、指数的真实值为E-偏移量,

单精度浮点数(32位,E长8位)中E的偏移量为127。

双精度浮点数(64位,E长11位)中E的偏移量为1023。

在计算真值时首先根据机器数写出E的值,再减去偏移量得真值。

偏移量的目的:将E转换成正数(无符号整数),不需要看符号位。具体在工程里有什么好处还看不出来。

2、教材中对尾数M的规定是 绝对值<1

IEEE754中M仅表示浮点数的小数部分,浮点数的整数部分为1。也就是说 IEEE754的规格化浮点数中尾数的标准形式为1.******(原码表示),而不是0.1*****(正数原码)或者1.1*******(负数原码)

IEEE中尾数M恒为正数,教材中可正可负(看符号位)

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值