线性代数的本质_bilibili视频笔记

向量

  • 向量用方括号括起来表示。

向量空间

  • 所有可以表示为给定向量线性组合的集合,被称为给定向量张成的空间。
  • 一组向量中可能有向量位于其它n-1个向量张成的空间内(比如有2个向量张成一个平面,第三个向量在该平面内),则称该向量是冗余的,对张成空间没有做出贡献。
  • 线性相关:多个向量中存在“多余的向量”,可以移除一个而不减小张成的空间。
  • 线性无关:所有的向量都给张成的空间增添了新的维度。
  • 基:张成该空间的一个线性无关向量的集合。

线性变换,矩阵

  • 严格意义上来说,线性变换是将向量作为输入和输出的一类函数。也可以看作是对空间的挤压伸展。
  • 线性变换的特征:直线在变换后仍为直线、原点必须保持固定。

总的来说,是“保持网格线平行且等距分布”的变换。

  • 向量v是i帽和j帽的一个特定线性组合,只需要变换基向量i和j,用它们表示的其它向量v都会随之而动。(核心想法)
  • 矩阵的列可以看作变换后的基向量。用某矩阵乘一个向量,可以认为是对这个向量进行了某种特定的线性变换。 因此,每个矩阵代表特定的线性变换。
  • 矩阵乘法计算的本质:假如矩阵有2列2行,向量有1列2行。矩阵x向量,向量可以表示为ai帽+bj帽,而i帽和j帽分别为矩阵的第一列和第二列,向量第一行的数由i帽控制,第二行的数由j帽控制,所以变换后的向量=向量第一行x矩阵第一列的数+向量第二行的数x矩阵第二列。(“i帽和j帽都去哪了”)

拓展到更多维也是同理

在这里插入图片描述

复合变换

  • 每个矩阵都可视作是一次线性变换,如果有多个矩阵,几何意义是线性变换的相继作用。
  • 应从右往左看,首先应用右侧矩阵所描述的变换。
  • 这些矩阵的变换=一个“复合变换”。复合矩阵是这些矩阵的积。

行列式

  • 行列式的几何意义:(对二维变换而言)线性变换后,1x1小方格面积放大的倍数。或者说,是线性变换改变面积的比例。(三维变换的行列式就是平行六面体的体积)
  • 行列式为0,说明该矩阵所代表的变换将空间压缩到更小的维度上。
  • 行列式为负,称这样的变换改变了空间的定向,像是把纸翻到了背面。

逆矩阵

线性方程组:
在这里插入图片描述

  • 矩阵A代表一种线性变换,所以求解Ax=v意味着我们寻找一个向量x,使得它在变换后与v重合。
  • 引入逆矩阵:A的逆矩阵带和A的线性变换相反的变换,AxA-1 得到一个什么也不做的矩阵(或回到原始状态)。
  • 所以当A的行列式不为0时,求解x可以用A的逆矩阵×v。
  • 当行列式为0时,可能无解,也可能有解。
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

秩、列空间、零空间

  • 秩代表着变换后空间的维数。
  • 列空间是矩阵的列所张成的空间,不管是一条直线、一个平面还是三维空间等,所有可能变换结果的集合。
  • 所以更精确的秩的定义是列空间的维数。
  • 对满秩变换(不降低维数)来说,唯一能在变换后落在原点的是零向量自身。
  • 变换后落在原点的向量的集合,称为矩阵的“零空间”或“核”。对非满秩变换,有很多向量在变换后都落在了原点(动画)。
  • 对线性方程组Ax=v,当v为零向量时,零空间给出的就是这个向量方程组所有可能的解x。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值