NNDL 作业7:第五章课后题(1×1卷积核|CNN BP)

目录

习题5-2 证明宽卷积具有交换性,即公式(5.13)

 习题5-3 分析卷积神经网络中用1×1的卷积核的作用

习题5-4 对于一个输入为100×100×256的特征映射组,使用3×3的卷积核,输出为100×100×256的特征映射组的卷积层,求其时间和空间复杂度。如果引入一个1×1的卷积核,先得到100×100×64的特征映射,再进行3×3的卷积,得到100×100×256的特征映射组,求其时间和空间复杂度

 习题5-7 忽略激活函数,分析卷积网络中卷积层的前向计算和反向传播是一种转置关系

推导CNN反向传播算法(选做)

1、已知池化层的误差,反向推导上一隐藏层的误差 

2.已知卷积层的误差,反向推导上一隐藏层的误差 

 ​编辑3、已知卷积层的误差,推导该层的W,b的梯度

设计简易CNN模型,分别用Numpy、Python实现卷积层和池化层的反向传播算子,并代入数值测试。

卷积层的反向传播

池化层的反向传播实现:

参考文献



习题5-2 证明宽卷积具有交换性,即公式(5.13)

现有

根据款卷积定义

 y_{ij}=\sum^m_{n=1-(m-1)}\sum^n_{v=1-(n-1)}w_{uv}\cdot x_{i+u-1,j+v-1}

 为了让x的下标形式和w的进行对换,进行变量替换

s=i-u+1, t=j-v+1

令 u=s-i+1,v=t-j+1

 则y_{ij}=\sum^{i-1+m}_{s=i+1-m}\sum^{j-1+n}_{t=j+1-n}x_{st}\cdot w_{s-i+1,t-j+1}

 已知i \in [1,M]J,J \in [1,N]

 因此由于y_{ij}=\sum^{i-1+m}_{s=i+1-m}\sum^{j-1+n}_{t=j+1-n}x_{st}w_{s-i+1,t-j+1}

 由于宽卷积的条件,s和t的变动范围是可行的

 习题5-3 分析卷积神经网络中用1×1的卷积核的作用

 1.降维

比如,一张500 * 500*100 的图片用20个1*1*100的filter做卷积,那么结果的大小为500*500*20

 2.升维(用最少的参数拓宽网络channal)

例子:64的卷积核的channel是64,只需添加一个11,256的卷积核,只用64256个参数就能把网络channel从64拓宽4倍到256。

3.加入非线性

卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励,提升网络的表达能力。

习题5-4 对于一个输入为100×100×256的特征映射组,使用3×3的卷积核,输出为100×100×256的特征映射组的卷积层,求其时间和空间复杂度。如果引入一个1×1的卷积核,先得到100×100×64的特征映射,再进行3×3的卷积,得到100×100×256的特征映射组,求其时间和空间复杂度

M=100;K=3;C_{in}=256;C_{out}=256

时间复杂度:100\times 100\times 3\times 3\times256\times 256=5898240000

空间复杂度:100\times 100\times256=2560000

M=100;K_{1}=1;K_{2}=3;C_{in1}=256;C_{out1}=256;C_{in2}=256;C_{out2}=256

时间复杂度 :100\times 100\times1\times1\times256\times64 + 100\times100\times3\times3\times64\times256 = 1638400000

空间复杂度:100\times100\times64 + 100\times100\times256 = 3200000

 习题5-7 忽略激活函数,分析卷积网络中卷积层的前向计算和反向传播是一种转置关系

以一个3\times3的卷积核为例,输入为X输出为Y

X=\begin{pmatrix} x_1&x_2&x_3&x_4\ x_5&x_6&x_7&x_8\ x_9&x_{10}&x_{11}&x_{12}\ x_{13}&x_{14}&x_{15}&x_{16}\ \end{pmatrix}W=\begin{pmatrix} w_{00}&w_{01}&w_{02}\ w_{10}&w_{11}&w_{12}\ w_{20}&w_{21}&w_{22}\ \end{pmatrix}Y=\begin{pmatrix} y_1&y_2\ y_3&y_4\ \end{pmatrix}X=\begin{pmatrix} x_1&x_2&x_3&x_4\ x_5&x_6&x_7&x_8\ x_9&x_{10}&x_{11}&x_{12}\ x_{13}&x_{14}&x_{15}&x_{16}\ \end{pmatrix}W=\begin{pmatrix} w_{00}&w_{01}&w_{02}\ w_{10}&w_{11}&w_{12}\ w_{20}&w_{21}&w_{22}\ \end{pmatrix}Y=\begin{pmatrix} y_1&y_2\ y_3&y_4\ \end{pmatrix}在这里插入图片描述

4\times4的输入特征展开为16\times1的矩阵,y展开为4\times4的矩阵,将卷积计算转化为矩阵相乘

 在这里插入图片描述

 在这里插入图片描述在这里插入图片描述

由 

在这里插入图片描述

而 

 在这里插入图片描述

即 

 在这里插入图片描述

 所以

 在这里插入图片描述

再看一下上面的Y=CX可以发现忽略激活函数时卷积网络中卷积层的前向计算和反向传播是一种转置关系。

推导CNN反向传播算法(选做)

1、已知池化层的误差,反向推导上一隐藏层的误差 

   在前向传播时,池化层我们会用MAX或者Average对输入进行池化,池化的区域大小已知。现在我们反过来,要从缩小后区域的误差,还原前一层较大区域的误差。

在反向传播时,我们首先会把δlδl的所有子矩阵矩阵大小还原成池化之前的大小,然后如果是MAX,则把δl的所有子矩阵的各个池化局域的值放在之前做前向传播算法得到最大值的位置。如果是Average,则把δl的所有子矩阵的各个池化局域的值取平均后放在还原后的子矩阵位置。

这个过程叫做upsample。假设我们的池化区域大小是2x2。第l层误差的第k个子矩阵\delta _{lk}为:

 \delta _{lk}=\begin{pmatrix} 2 &8 \\ 4 & 6 \end{pmatrix}

 如果池化区域表示为a*a大小,那么我们把上述矩阵上下左右各扩展a-1行和列进行还原:

 \begin{pmatrix} 0 & 0 & 0 & 0\\ 0& 2& 8&0 \\ 0& 4& 6& 0\\ 0& 0& 0& 0 \end{pmatrix}

 如果是MAX,假设我们之前在前向传播时记录的最大值位置分别是左上,右下,右上,左下,则转换后的矩阵为:

\begin{pmatrix} 2& 0& 0& 0\\ 0& 0& 0& 8\\ 0& 4& 0& 0\\ 0& 0& 6 & 0 \end{pmatrix}

 如果是Average,则进行平均:转换后的矩阵为:

\begin{pmatrix} 0.5& 0.5& 2& 2\\ 0.5& 0.5& 2& 2\\ 1& 1& 1.5& 1.5\\ 1& 1& 1.5& 1.5 \end{pmatrix}

上边这个矩阵就是误差矩阵经过upsample之后的矩阵,那么,由后一层误差推导出前一层误差的公式为:\delta ^{l-1}=upsample(\delta^l) \odot \sigma '(z^{l-1}) 

上式和普通网络的反向推导误差很类似:\delta^l=((w^{l+1})^T\delta^{l+1})\odot \sigma '(z^l) 

可以看到,只有第一项不同。

2.已知卷积层的误差,反向推导上一隐藏层的误差 

公式如下:\delta^{l-1}=\delta^l\frac{\partial z^l}{\partial z^{l-1}}=\delta^l\ast rot180(W^l)\odot \sigma '(z^{l-1})

我们再看一次普通网络的反向推导误差的公式:\delta^l=((w^{l+1})^T\delta^{l+1})\odot \sigma '(z^l)

可以看到区别在于,下一层的权重w的转置操作,变成了旋转180度的操作,也就是上下翻转一次,左右再翻转一次,这其实就是“卷积”一词的意义(我们可简单理解为数学上的trick),可参考下图,Q是下一层的误差,周围补0方便计算,W是180度翻转后的卷积核,P是W和Q做卷积的结果:

 3、已知卷积层的误差,推导该层的W,b的梯度

经过以上各步骤,我们已经算出每一层的误差了,那么:
a)对于全连接层,可以按照普通网络的反向传播算法求该层W,b的梯度。
b)对于池化层,它并没有W,b,也不用求W,b的梯度。
c)只有卷积层的W,b需要求出,先看w:\frac{\partial J(W,b)}{\partial W^l}=\frac{\partial J(W,b)}{\partial z^l}\frac{\partial z^l}{\partial W^l}=\delta^l\ast rot180(a^{l-1})

再对比一下普通网络的求w梯度的公式,发现区别在于,对前一层的输出做翻转180度的操作:\frac{\partial C}{\partial w_{jk}^l}=a_k^{l-1}\delta_j^l 

而对于b,则稍微有些特殊,因为在CNN中,误差δ是三维张量,而b只是一个向量,不能像普通网络中那样直接和误差δ相等。通常的做法是将误差δ的各个子矩阵的项分别求和,得到一个误差向量,即为b的梯度:\frac{\partial J(W,b)}{\partial b^l}=\sum_{u,v}^{U,V}(\delta^l)_{u,v} 

设计简易CNN模型,分别用Numpy、Python实现卷积层和池化层的反向传播算子,并代入数值测试。

卷积层的反向传播

import numpy as np
import torch.nn as nn
 
 
class Conv2D(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
        super(Conv2D, self).__init__()
 
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
 
        self.weights = np.random.standard_normal((out_channels, in_channels, kernel_size, kernel_size))
        self.bias = np.zeros(out_channels)
 
        self.grad_w = np.zeros(self.weights.shape)
        self.grad_b = np.zeros(self.bias.shape)
 
    def forward(self, x):
        self.x = x
        weights = self.weights.reshape(self.out_channels, -1)  # o,ckk
 
        x = np.pad(x, ((0, 0), (0, 0), (self.padding, self.padding), (self.padding, self.padding)), 'constant',
                   constant_values=0)
        b, c, h, w = x.shape
 
        self.out = np.zeros(
            (b, self.out_channels, (h - self.ksize) // self.stride + 1, (w - self.ksize) // self.stride + 1))
 
        self.col_img = self.im2col(x, self.ksize, self.stride)  # bhw * ckk
        out = np.dot(weights, self.col_img.T).reshape(self.out_channels, b, -1).transpose(1, 0, 2)
 
        self.out = np.reshape(out, self.out.shape)
 
        return self.out
 
    def backward(self, grad_out):
        b, c, h, w = self.out.shape  #
 
        grad_out_ = grad_out.transpose(1, 0, 2, 3)  # b,oc,h,w * (bhw , ckk)
        grad_out_flat = np.reshape(grad_out_, [self.out_channels, -1])
 
        self.grad_w = np.dot(grad_out_flat, self.col_img).reshape(self.grad_w.shape)
        self.grad_b = np.sum(grad_out_flat, axis=1)
        tmp = self.ksize - self.padding - 1
        grad_out_pad = np.pad(grad_out, ((0, 0), (0, 0), (tmp, tmp), (tmp, tmp)), 'constant', constant_values=0)
 
        flip_weights = np.flip(self.weights, (2, 3))
        # flip_weights = np.flipud(np.fliplr(self.weights)) # rot(180)
        flip_weights = flip_weights.swapaxes(0, 1)  # in oc
        col_flip_weights = flip_weights.reshape([self.in_channels, -1])
 
        weights = self.weights.transpose(1, 0, 2, 3).reshape(self.in_channels, -1)
 
        col_grad = self.im2col(grad_out_pad, self.ksize, 1)  # bhw,ckk
 
        # (in,ckk) * (bhw,ckk).T
        next_eta = np.dot(weights, col_grad.T).reshape(self.in_channels, b, -1).transpose(1, 0, 2)
 
        next_eta = np.reshape(next_eta, self.x.shape)
 
        return next_eta
 
    def zero_grad(self):
        self.grad_w = np.zeros_like(self.grad_w)
        self.grad_b = np.zeros_like(self.grad_b)
 
    def update(self, lr=1e-3):
        self.weights -= lr * self.grad_w
        self.bias -= lr * self.grad_b
 
    def im2col(self, x, k_size, stride):
        b, c, h, w = x.shape
        image_col = []
        for n in range(b):
            for i in range(0, h - k_size + 1, stride):
                for j in range(0, w - k_size + 1, stride):
                    col = x[n, :, i:i + k_size, j:j + k_size].reshape(-1)
                    image_col.append(col)
 
        return np.array(image_col)
 
 
class Layers():
    def __init__(self, name):
        self.name = name
 
    # 前向
    def forward(self, x):
        pass
 
    # 梯度置零
    def zero_grad(self):
        pass
 
    # 后向
    def backward(self, grad_out):
        pass
 
    # 参数更新
    def update(self, lr=1e-3):
        pass
 
 
class Module():
    def __init__(self):
        self.layers = []  # 所有的Layer
 
    def forward(self, x):
        for layer in self.layers:
            x = layer.forward(x)
        return x
 
    def backward(self, grad):
        for layer in reversed(self.layers):
            layer.zero_grad()
            grad = layer.backward(grad)
 
    def step(self, lr=1e-3):
        for layer in reversed(self.layers):
            layer.update(lr)
 
 
# test_conv
if __name__ == '__main__':
    x = np.array([[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]],
               [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]]])
    conv = Conv2D(2, 3, 2, 1, 0)
    y = conv.forward(x)
    print(y.shape)
    loss = y - (y + 1)
    grad = conv.backward(loss)
    print(grad.shape)

池化层的反向传播实现:

import numpy as np
from module import Layers 
 
class Pooling(Layers):
    def __init__(self, name, ksize, stride, type):
        super(Pooling).__init__(name)
        self.type = type
        self.ksize = ksize
        self.stride = stride 
 
    def forward(self, x):
        b, c, h, w = x.shape
        out = np.zeros([b, c, h//self.stride, w//self.stride]) 
        self.index = np.zeros_like(x)
        for b in range(b):
            for d in range(c):
                for i in range(h//self.stride):
                    for j in range(w//self.stride):
                        _x = i *self.stride
                        _y = j *self.stride
                        if self.type =="max":
                            out[b, d, i, j] = np.max(x[b, d, _x:_x+self.ksize, _y:_y+self.ksize])
                            index = np.argmax(x[b, d, _x:_x+self.ksize, _y:_y+self.ksize])
                            self.index[b, d, _x +index//self.ksize, _y +index%self.ksize ] = 1
                        elif self.type == "aveg":
                            out[b, d, i, j] = np.mean((x[b, d, _x:_x+self.ksize, _y:_y+self.ksize]))
        return out 
 
    def backward(self, grad_out):
        if self.type =="max":
            return np.repeat(np.repeat(grad_out, self.stride, axis=2),self.stride, axis=3)* self.index 
        elif self.type =="aveg":
            return np.repeat(np.repeat(grad_out, self.stride, axis=2), self.stride, axis=3)/(self.ksize * self.ksize)

参考文献

卷积神经网络(CNN)反向传播算法 - 刘建平Pinard - 博客园 (cnblogs.com)

Backpropagation In Convolutional Neural Networks | DeepGrid (jefkine.com)

Convolutional Neural Networks backpropagation: from intuition to derivation – Grzegorz Gwardys (wordpress.com)

 卷积神经网络(CNN)反向传播算法推导 - 知乎 (zhihu.com)

十二、CNN的反向传播 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值