7-2 统计素数并求和 (20分)__C++

本文介绍了一种算法,用于统计指定范围内所有素数的数量并计算这些素数的总和。该算法通过优化循环和使用平方根来提高效率。
该文章已生成可运行项目,

题目

本题要求统计给定整数M和N区间内素数的个数并对它们求和。

输入格式

输入在一行中给出两个正整数M和N(1≤M≤N≤500)。

输出格式

在一行中顺序输出M和N区间内素数的个数以及它们的和,数字间以空格分隔。

输入样例

10 31

输出样例

7 143

代码

#include <iostream>
#include <cmath>
using namespace std;
int main()
{
	int m,n,b,sum=0,num=0,x,i;
	cin>>m>>n;
	if (m==1)//考虑m=1,而1不是素数也不是合数的情况
	{
		m=2;
	}
	for(x=m;x<=n;x++)//从m开始用循环找出m至n之间的素数 
	{
		b=sqrt(x);
		for(i=2;i<=b;i++)//判断区间[m,n]内的某一实数x是否为素数 
		{
			if(x%i==0)//如果x为素数,则跳出寻找约数的循环 
			break;
		}
		if(i>=b+1)//找不到约数,确定是素数 
		{num=num+1;//素数个数+1 
		sum=sum+x;}//素数求和
	}
	cout<<num<<" "<<sum<<endl;
	return 0;
		
}

总结

设x不是一个素数,那么x就当然有一个不小于2的因子m,即x可以分解为x=(sqrt(x))²=mn,其中m和n为x的两个约数,显然m和n都是大于或等于2的整数。假设m是m与n两个数中比较小的一个整数,可以得出(sqrt(x))²=mn≥m²≥2²,前提条件“x是一个正整数”可得sqrt(x)≥m≥2。
故可以得出一个结论:
若正整数x不是一个素数,那么在2~sqrt(x)之间必有一个约数。
本文章已经生成可运行项目
### 回答1: 题目描述 输入两个正整数 m≤n≤10^4,输出 [m,n] 范围内所有素数的个数与和。 输入格式 输入共一行,包含两个正整数 m 和 n。 输出格式 输出共一行,包含两个整数,别表示素数的个数与和。 数据范围 m≤n≤10^4 输入样例: 5 17 输出样例: 7 58 算法1 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 python3 代码 算法2 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 C++ 代码 算法3 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 Java 代码 算法4 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 C 代码 算法5 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 Go 代码 算法6 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 Scala 代码 算法7 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 JavaScript 代码 算法8 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 C# 代码 算法9 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 Ruby 代码 算法10 (暴力枚举) $O(n\sqrt n)$ blablabla 时间复杂度 参考文献 ### 回答2: 这个题目的要求是统计某一范围内的素数个数,对这些素数进行求和题目的难点在于素数的查找。素数指的是只能被1和本身整除的整数,即除了1和本身以外没有其它因子的数。常见的判断素数的方法有两种:穷举法和试除法。 穷举法的思路是将待判断的数别除以所有小于它的正整数,如果发现除以某个数后余数为0,则该数不是素数,如果一直除到最后都没有余数为0,那么该数就是素数。但是这种方法效率比较低,对于较大的数来说判断会非常耗时。 试除法是一种更高效的方法,它的思路是对于待判断的数n,从2到sqrt(n)依次判断其能否被整除,如果能被整除则它就不是素数,反之则是素数。这种方法可以大幅减少判断次数,从而更快地找出素数。 在解决了素数查找的问题之后,我们就可以得出程序的大概流程了。首先读取输入的范围,然后逐个判断每个数是否是素数,如果是素数则累加计数器,同时将素数加入求和变量中。最后输出素数个数和总和即可。 这个程序需要注意的是输入的范围可能非常大,判断素数的时候需要使用高效的算法,否则程序可能会因为处理过慢而超时。同时,由于素数的个数是不确定的,所以建议使用动态数组或链表来存储素数,而不是使用静态数组。最后,为了提高程序的效率,可以尝试使用多线程或行计算的方法,从而加速处理。 ### 回答3: 这道题目要求我们编写一个程序,统计求和给定范围内的所有素数素数是指只能被1和自身整除的正整数,也就是不能被其他正整数整除的数。 首先,我们需要考虑给定范围的输入方式。题目没有具体说明,我们可以设置一个变量来表示范围,然后通过用户的输入来获取。 接着,我们需要考虑如何判断一个数是否为素数。我们可以使用循环判断,从2到这个数的平方根范围内进行判断。如果能够找到一个数能够整除这个数,那么它就不是素数。如果循环结束后没有找到能够整除这个数的数,那么它就是素数。 最后,我们需要统计求和素数。我们可以使用一个循环,从给定范围的开始位置到结束位置进行遍历。如果当前数字是素数,就将它加入到求和的结果中。 下面是具体的代码实现: ```python # 获取范围 start = int(input("请输入起始数字:")) end = int(input("请输入结束数字:")) # 统计素数求和 total = 0 for i in range(start, end+1): is_prime = True for j in range(2, int(i**0.5)+1): if i % j == 0: is_prime = False break if is_prime and i > 1: print(i) total += i print("素数的和为:", total) ``` 对于输入范围没有限制,如果输入范围过大,可能会导致程序运行时间过长,因此需要针对大范围的情况进行优化,比如使用片筛法等。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值