题目
本题要求统计给定整数M和N区间内素数的个数并对它们求和。
输入格式
输入在一行中给出两个正整数M和N(1≤M≤N≤500)。
输出格式
在一行中顺序输出M和N区间内素数的个数以及它们的和,数字间以空格分隔。
输入样例
10 31
输出样例
7 143
代码
#include <iostream>
#include <cmath>
using namespace std;
int main()
{
int m,n,b,sum=0,num=0,x,i;
cin>>m>>n;
if (m==1)//考虑m=1,而1不是素数也不是合数的情况
{
m=2;
}
for(x=m;x<=n;x++)//从m开始用循环找出m至n之间的素数
{
b=sqrt(x);
for(i=2;i<=b;i++)//判断区间[m,n]内的某一实数x是否为素数
{
if(x%i==0)//如果x为素数,则跳出寻找约数的循环
break;
}
if(i>=b+1)//找不到约数,确定是素数
{num=num+1;//素数个数+1
sum=sum+x;}//素数求和
}
cout<<num<<" "<<sum<<endl;
return 0;
}
总结
设x不是一个素数,那么x就当然有一个不小于2的因子m,即x可以分解为x=(sqrt(x))²=mn,其中m和n为x的两个约数,显然m和n都是大于或等于2的整数。假设m是m与n两个数中比较小的一个整数,可以得出(sqrt(x))²=mn≥m²≥2²,前提条件“x是一个正整数”可得sqrt(x)≥m≥2。
故可以得出一个结论:
若正整数x不是一个素数,那么在2~sqrt(x)之间必有一个约数。