【蓝桥杯Java组】一学就会的小技巧(三):快速幂

本文详细介绍了快速幂算法,一种将传统幂运算时间复杂度从O(N)降至O(logN)的高效技巧。通过实例解析算法原理,并提供Java模板代码,帮助理解如何在计算过程中避免溢出并进行模运算。同时,文章还提及快速幂在解决K倍区间问题中的应用。
摘要由CSDN通过智能技术生成

header

🍻前言:

🎈🎈快速幂就是快速算底数的n次幂。其时间复杂度为 O(log₂N), 与朴素的O(N)相比效率有了极大的提高。

题目传送门🚀🚀🚀

题目链接
P1226 【模板】快速幂||取余运算https://www.luogu.com.cn/problem/P1226

🍸快速幂:

👩🏻‍🏫从一道模板题入手来了解快速幂~
题目

⭐常规幂运算的时间复杂度为 O ( N ) O(N) O(N),主要取决于指数的大小。题目中的指数最大可以是 2 31 2^{31} 231,显然在1s内算不出结果,这时就要用到快速幂这个技巧了。

✨如何快速幂呢?✨

  • 以题目中的样例为例,由幂运算的性质, 2 10 2^{10} 210可以拆分成 2 5 × 2 5 2^5 \times{2^5} 25×25 2 5 2^{5} 25可以继续拆分成 2 2 × 2 3 2^{2} \times 2^{3} 22×23

  • 再由二进制的运算性质,不妨将指数写成二进制形式, 2 10 2^{10} 210 ==> 2 ( 1010 ) 2 2^{(1010)_2} 2(1010)2,那么计算 2 10 2^{10} 210可以根据指数的二进制形式拆开成:

    2 10 = ( 2 1 × 0 ) × ( 2 2 × 1 ) × ( 2 4 × 0 ) × ( 2 8 × 1 ) 2^{10} = (2^1 \times {0}) \times {(2^2 \times{1})} \times{(2^4 \times 0)} \times{(2^8 \times 1)} 210=(21×0)×(22×1)×(24×0)×(28×1)

    即 : 2 10 = ( 2 2 × 1 ) × ( 2 8 × 1 ) 即:2^{10} = (2^2 \times{1}) \times{(2^8 \times 1)} 210=(22×1)×(28×1)

  • 所以,我们可以先将结果设置为1,然后从低位到高位判断二进制形式指数上的每一位(二进制的每一位从第到高分别代表1,2,4,8,16...次幂,换句话说就是第n位二进制数代表 2 n − 1 2^{n-1} 2n1次幂)如果是0则跳过,如果是1则将结果乘以底数的 2 n − 1 2^{n-1} 2n1次幂。

  • 如何判断每个二进制位是不是1呢?可以通过和1进行与运算的方式,判断最低位是不是1,然后再右移一位依次进行判断。

  • 这种方法的时间复杂度取决于指数二进制形式的位数,为 O ( l o g N ) O(logN) O(logN)

  • 题目中还要求我们对结果取模,然而由于幂运算的结果可能很大,在计算过程中就有可能溢出,所以必须在计算过程中就对每一次的计算结果取模。由同余定理可知这样做并不会影响最终结果。

  • 同余定理

    ( a × b ) m o d    c = ( a m o d    c ) × ( b m o d    c ) m o d    c (a \times b) \mod{c} = (a \mod {c}) \times{(b \mod{c})} \mod c (a×b)modc=(amodc)×(bmodc)modc

🍦模板代码(Java):

import java.util.Scanner;

public class Main {

    public static long fastPower(long a, long b, long p) {
        long res = 1;
        while (b > 0) {
            if ((b & 1) == 1)
                res = (res * a) % p;
            a = (a * a) % p;
            b = b >> 1;
        }
        return res;
    }

    public static void main(String[] args) {
          Scanner sc = new Scanner(System.in);
          int a = sc.nextInt();
          int b = sc.nextInt();
          int p = sc.nextInt();
          sc.close();
          long res = fastPower(a, b, p);
          System.out.println(a + "^" + b + " mod "+ p+ "=" + res);
    }
}

🍌🍌🍌
本文介绍了第三个小技巧——快速幂,可以将传统幂运算的 O ( N ) O(N) O(N)降低为 O ( l o g N ) O(logN) O(logN)~
🍍🍍🍍
创作不易,如果觉得本文对你有所帮助的话请动动小手,给博主点个免费的赞吧。🙇🏻‍♀️
🍉🍉🍉
@作者:Mymel_晗,计科专业大学牲一枚,请大佬们多多关照~

footer

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mymel_晗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值