奇异值分解介绍

相关文章

从几何视角看奇异值分解(MATLAB实现)
奇异值分解的应用及MATLAB实现(图像压缩、谱聚类、潜在语义分析、主成分分析、背景删除等)

奇异值分解

A ∈ C r m × n ( r > 0 ) \mathbf{A \in C_r^{m \times n} (r>0)} ACrm×n(r>0),则存在 m m m阶的酉矩阵 U \mathbf{U} U n n n的酉矩阵 V \mathbf{V} V,使得
U н A V = [ Σ O O O ] ( 1.1 ) U^\text{н}AV=\begin{bmatrix}\boldsymbol{\Sigma}&\boldsymbol{O}\\\boldsymbol{O}&\boldsymbol{O}\end{bmatrix} \quad(1.1) UнAV=[ΣOOO](1.1)
其中 Σ = \boldsymbol{\Sigma}= Σ=diag ( σ 1 , σ 2 , . . . , σ r ) (\sigma_1,\sigma_2,...,\sigma_r) (σ1,σ2,...,σr),而 σ i ( i = 1 , 2 , . . . , r ) \sigma_i(i=1,2,...,r) σi(i=1,2,...,r)为矩阵 A \boldsymbol{A} A的全部非零奇异值,其中 σ i = λ i \sigma_i= \sqrt{\lambda_i} σi=λi λ i \lambda_i λi A н A \mathbf{A^\text{н}A} AнA的特征值。
该结论证明如下:
设Hermite矩阵 A н A \mathbf{A^\text{н}A} AнA的特征值为
λ 1 ⩾ λ 2 ⩾ ⋅ ⋅ ⋅ ⩾ λ r > λ r + 1 = ⋅ ⋅ ⋅ = λ n = 0 \lambda_1\geqslant\lambda_2\geqslant\cdotp\cdotp\cdotp\geqslant\lambda_r>\lambda_{r+1}=\cdotp\cdotp\cdotp=\lambda_n=0 λ1λ2⋅⋅⋅λr>λr+1=⋅⋅⋅=λn=0
因为 A \mathbf{A} A酉相似于对角矩阵的充要条件是 A \mathbf{A} A为正规矩阵(满足 A A н = A н A \mathbf{AA^\text{н}}=\mathbf{A^\text{н}A} AAн=AнA),则存在 n n n阶酉矩阵 V \mathbf{V} V,使得
V H ( A H A ) V = [ λ 1 ⋱ λ n ] = [ Σ 2 O 0 0 ] ( 1.2 ) \boldsymbol{V}^\mathrm{H}(\boldsymbol{A}^\mathrm{H}\boldsymbol{A})\boldsymbol{V}=\begin{bmatrix}\lambda_1&&\\&\ddots&\\&&\lambda_n\end{bmatrix}=\begin{bmatrix}\boldsymbol{\Sigma}^2&\boldsymbol{O}\\\boldsymbol{0}&\boldsymbol{0}\end{bmatrix} \quad(1.2) VH(AHA)V= λ1λn =[Σ20O0](1.2)
V \mathbf{V} V分块为
V = [ V 1 ⋮ V 2 ] , V 1 ∈ C r n × r , V 2 ∈ C n − r n × ( n − r ) V=\begin{bmatrix}V_1&\varvdots&V_2\end{bmatrix},\quad V_1\in\mathbf{C}_r^{n\times r},V_2\in\mathbf{C}_{n-r}^{n\times(n-r)} V=[V1V2],V1Crn×r,V2Cnrn×(nr)
并改写式 ( 1.2 ) (1.2) (1.2)
A H A V = V [ Σ 2 O O O ] A^\mathrm{H}AV=V{\begin{bmatrix}\boldsymbol{\Sigma}^2&\boldsymbol{O}\\\boldsymbol{O}&\boldsymbol{O}\end{bmatrix}} AHAV=V[Σ2OOO]
则有
A H A V 1 = V 1 Σ 2 , A H A V 2 = O ( 1.3 ) A^\mathrm{H}AV_1=V_1\boldsymbol{\Sigma}^2,\quad A^\mathrm{H}AV_2=\boldsymbol{O} \quad(1.3) AHAV1=V1Σ2,AHAV2=O(1.3)
由式 ( 1.3 ) (1.3) (1.3)的第一式可得 V 1 H A H A V 1 = Σ 2 V_1^\mathrm{H}A^\mathrm{H}AV_1=\boldsymbol{\Sigma}^2 V1HAHAV1=Σ2,或者
( A V 1 Σ − 1 ) H ( A V 1 Σ − 1 ) = I r (AV_1\boldsymbol{\Sigma}^{-1})^\mathrm{H}(AV_1\boldsymbol{\Sigma}^{-1})=I_r (AV1Σ1)H(AV1Σ1)=Ir
由式 ( 1.3 ) (1.3) (1.3)的第二式可得
( A V 2 ) H ( A V 2 ) = 0 或 A V 2 = 0 (AV_2)^{\mathrm{H}}(AV_2)=0\quad\text{或}\quad AV_2=0 (AV2)H(AV2)=0AV2=0
U 1 = A V 1 Σ − 1 \boldsymbol{U}_{1}=\boldsymbol{A}\boldsymbol{V}_{1}\boldsymbol{\Sigma}^{-1} U1=AV1Σ1,则 U 1 = I r \boldsymbol{U}_{1}=\boldsymbol{I}_{r} U1=Ir,即 U 1 \boldsymbol{U}_{1} U1 r r r个列是两两正交的单位向量,记作 U 1 = ( u 1 , u 2 , … , u r ) \boldsymbol{U}_{1}=(\boldsymbol{u}_{1},\boldsymbol{u}_{2},\ldots,\boldsymbol{u}_{r}) U1=(u1,u2,,ur),可将 u 1 , u 2 , … , u r \boldsymbol{u}_{1},\boldsymbol{u}_{2},\ldots,\boldsymbol{u}_{r} u1,u2,,ur,扩充为 C m \mathbf{C}^{m} Cm的标准正交基,记增添的向量为 u r + 1 , … , u m \boldsymbol{u}_{r+1},\ldots,\boldsymbol{u}_{m} ur+1,,um,并构造矩阵 U 2 = ( u r + 1 , … , u m ) \boldsymbol{U}_{2}=(\boldsymbol{u}_{r+1},\ldots,\boldsymbol{u}_{m}) U2=(ur+1,,um),则
U = [ U 1 ⋮ U 2 ] = ( u 1 , u 2 , … , u r , u r + 1 , … , u m ) \mathbf{U=\begin{bmatrix}U_1 & \vdots & U_2\end{bmatrix}=(u_1,u_2,\ldots,u_r,u_{r+1},\ldots,u_m)} U=[U1U2]=(u1,u2,,ur,ur+1,,um)
m m m阶酉矩阵,且有
U 1 H U 1 = I r , U 2 H U 1 = O \mathbf{ U_1{}^{\mathrm{H}}U_1=I_r,\quad U_2{}^{\mathrm{H}}U_1=O } U1HU1=Ir,U2HU1=O
于是可得
U H A V = U H [ A V 1 ⋮ A V 2 ] = [ U 1 H U 2 H ] [ U 1 Σ ⋮ O ] = [ U 1 H U 1 Σ O U 2 H U 1 Σ O ] = [ Σ O O O ] \begin{aligned}\boldsymbol{U}^\mathrm{H}\boldsymbol{A}\boldsymbol{V}&=\boldsymbol{U}^\mathrm{H}\begin{bmatrix}\boldsymbol{A}\boldsymbol{V}_1& \vdots &\boldsymbol{A}\boldsymbol{V}_2\end{bmatrix}=\begin{bmatrix}\boldsymbol{U}_1^\mathrm{H}\\\boldsymbol{U}_2^\mathrm{H}\end{bmatrix}\begin{bmatrix}\boldsymbol{U}_1\boldsymbol{\Sigma}& \vdots &\boldsymbol{O}\end{bmatrix}=\begin{bmatrix}\boldsymbol{U}_1^\mathrm{H}\boldsymbol{U}_1\boldsymbol{\Sigma}&\boldsymbol{O}\\\boldsymbol{U}_2^\mathrm{H}\boldsymbol{U}_1\boldsymbol{\Sigma}&\boldsymbol{O}\end{bmatrix}=\begin{bmatrix}\boldsymbol{\Sigma}&\boldsymbol{O}\\\boldsymbol{O}&\boldsymbol{O}\end{bmatrix}\end{aligned} UHAV=UH[AV1AV2]=[U1HU2H][U1ΣO]=[U1HU1ΣU2HU1ΣOO]=[ΣOOO]
以上为式 ( 1.1 ) (1.1) (1.1)的证明过程,将其改写为
A = U [ Σ O O O ] V н = U S V н ( 1.4 ) A =U\begin{bmatrix}\boldsymbol{\Sigma}&\boldsymbol{O}\\\boldsymbol{O}&\boldsymbol{O}\end{bmatrix}V^\text{н} = USV^\text{н} \quad(1.4) A=U[ΣOOO]Vн=USVн(1.4)
我们称式 ( 1.4 ) (1.4) (1.4)为矩阵 A \mathbf{A} A奇异值分解(Singular Value Decomposition, SVD)

值得注意的是: 矩阵的奇异值概念是对矩阵的特征值概念的推广,矩阵的奇异值分解是对矩阵的正交相似对角化问题的推广,任何矩阵都可以进奇异值分解,但只有可对角化的矩阵才能进行特征值分解。

参考文献

[1] 张凯院, 徐仲等. 矩阵论.

  • 10
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值