给定一个01串S,求出它的一个尽可能长的子串Si…j,满足存在一个位置i<=x <j, Si…x中0比1多,而Sx+1…j 中1比0多。求满足条件的最长子串长度。
Input
一行包含一个只由0和1构成的字符串S。 S的长度不超过1000000。
Output
一行包含一个整数,表示满足要求的最长子串的长度。
Sample Input10
Sample Output
0
题解:
预处理:
将0看作-1,将1看成1
问题便转化成了,在字符串中寻找一点x,这个x的(前缀和小于0的最长长度+后缀和大于0的最长长度)是最长的。
那么怎么找前缀和最长?
1、先从前往后遍历一遍,此时前缀和假如小于零,则标记长度即可
2、若此时前缀和大于零,则往前找到第一个出现前缀之和+1的地方,减去即可。
这里不难证明,第一次出现的情况比为当前情况的最优解
同理 后缀也一样。
这时候字符串上每一个点,都有对应的最长前缀和与最长后缀和,比较每个点的(前缀和+后缀和)长度,求出最长的那个点即可。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 1000005
char s[maxn];
int a[maxn],b[maxn],c[maxn],h[maxn];
int main()
{
int len,i,t=0,x,ans=0;
scanf("%s",s+1);
len=strlen(s+1);
for(i=1;i<=len;i++)
{
if(s[i]=='0')
a[i]=-1;
else
a[i]=1;
}//将0看作-1 将1看作1
for(i=1;i<=len;i++)
{
t+=a[i];//求出前缀和
if(t<0)//如果前缀和小于0 则满足0比1多的条件
b[i]=i;
else//如果前缀和大于0
{
if(h[t+1]!=0)
b[i]=i-h[t+1];//往前找到第一个出现(前缀和+1)的地方,减去这里的坐标,就是满足条件的前缀和的长度
else//没有满足条件的前缀和
{
h[t]=i;//标记
b[i]=0;//此处前缀和为0
}
}
}
t=0;
memset(h,0,sizeof(h));//全都归0
for(i=len;i>0;i--)//后缀和同理
{
t+=a[i];
if(t>0)
c[i]=len-i+1;
else
{
if(h[-t+1]!=0)
c[i]=h[-t+1]-i;
else
{
h[-t]=i;
c[i]=0;
}
}
}
for(i=1;i<=len;i++)//对于每个x都有对应的最长前缀和与后缀和,比较求出最长的
if(b[i]>0 && c[i+1]>0)
ans=max(ans,c[i+1]+b[i]);
printf("%d\n",ans);
}