01串-前缀和与差分

给定一个01串S,求出它的一个尽可能长的子串Si…j,满足存在一个位置i<=x <j, Si…x中0比1多,而Sx+1…j 中1比0多。求满足条件的最长子串长度。
Input
一行包含一个只由0和1构成的字符串S。 S的长度不超过1000000。
Output
一行包含一个整数,表示满足要求的最长子串的长度。
Sample Input

10

Sample Output

0

题解:

预处理:

将0看作-1,将1看成1

问题便转化成了,在字符串中寻找一点x,这个x的(前缀和小于0的最长长度+后缀和大于0的最长长度)是最长的。

那么怎么找前缀和最长?

1、先从前往后遍历一遍,此时前缀和假如小于零,则标记长度即可

2、若此时前缀和大于零,则往前找到第一个出现前缀之和+1的地方,减去即可。

这里不难证明,第一次出现的情况比为当前情况的最优解

同理 后缀也一样。

这时候字符串上每一个点,都有对应的最长前缀和与最长后缀和,比较每个点的(前缀和+后缀和)长度,求出最长的那个点即可。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define maxn 1000005
char s[maxn];
int a[maxn],b[maxn],c[maxn],h[maxn];
int  main()
{
    int len,i,t=0,x,ans=0;
    scanf("%s",s+1);
    len=strlen(s+1);
    for(i=1;i<=len;i++)
    {
        if(s[i]=='0')
            a[i]=-1;
        else
            a[i]=1;
    }//将0看作-1 将1看作1
    for(i=1;i<=len;i++)
    {
        t+=a[i];//求出前缀和
        if(t<0)//如果前缀和小于0 则满足0比1多的条件
            b[i]=i;
        else//如果前缀和大于0
        {
            if(h[t+1]!=0)
                b[i]=i-h[t+1];//往前找到第一个出现(前缀和+1)的地方,减去这里的坐标,就是满足条件的前缀和的长度
            else//没有满足条件的前缀和
            {
                h[t]=i;//标记
                b[i]=0;//此处前缀和为0
            }
        }
    }
    t=0;
    memset(h,0,sizeof(h));//全都归0
    for(i=len;i>0;i--)//后缀和同理
    {
        t+=a[i];
        if(t>0)
            c[i]=len-i+1;
        else
        {
            if(h[-t+1]!=0)
                c[i]=h[-t+1]-i;
            else
            {
                h[-t]=i;
                c[i]=0;
            }
        }
    }
    for(i=1;i<=len;i++)//对于每个x都有对应的最长前缀和与后缀和,比较求出最长的
        if(b[i]>0 && c[i+1]>0)
            ans=max(ans,c[i+1]+b[i]);
    printf("%d\n",ans);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值