特征值和特征向量

特征值和特征向量

定义 A A A n n n阶矩阵, α \alpha α n n n非零列向量,满足 A α = λ α A\alpha=\lambda\alpha Aα=λα则称 λ \lambda λ是矩阵 A A A的特征值, α \alpha α是矩阵 A A A对应于特征值 λ \lambda λ的特征向量

A α = λ α ( α ≠ 0 ) ⇒ ( λ E − A ) α = 0 A\alpha=\lambda\alpha(\alpha\neq0)\Rightarrow(\lambda E-A)\alpha=0 Aα=λα(α=0)(λEA)α=0
α \alpha α ( λ E − A ) x = 0 (\lambda E-A)x=0 (λEA)x=0的非零解
(1)由 ∣ λ E − A ∣ = 0 |\lambda E-A|=0 λEA=0求特征值 λ i \lambda_i λi n n n个(含重根)
(2)由 ( λ i E − A ) x = 0 (\lambda_i E-A)x=0 (λiEA)x=0求基础解系即 λ i \lambda_i λi线性无关的特征向量

推广公式
( A + k E ) α = ( λ + k ) α (A+kE)\alpha=(\lambda+k)\alpha (A+kE)α=(λ+k)α
A n α = λ n α A^n\alpha=\lambda^n\alpha Anα=λnα
A A A可逆,则
A T α = λ α A^T\alpha=\lambda\alpha ATα=λα

A − 1 α = 1 λ α A^{-1}\alpha=\frac 1 \lambda \alpha A1α=λ1α

A ∗ α = ∣ A ∣ λ α A^*\alpha=\frac {|A|}\lambda \alpha Aα=λAα

定理 A A A n n n阶矩阵
(1) Σ λ i = Σ a i i = t r ( A ) \Sigma \lambda_i=\Sigma a_{ii}=t_r(A) Σλi=Σaii=tr(A)(矩阵的迹)
(2) Π λ i = ∣ A ∣ \Pi \lambda_i=|A| Πλi=A

定理 A A A可逆    ⟺    A \iff A A n n n个特征值全不为0

定理 矩阵 A A A对应于不同特征值的特征向量是线性无关的

定理 同一特征值对应的特征向量做线性运算后仍是矩阵 A A A的特征向量,不同特征值对应的特征向量做线性运算后不是矩阵 A A A的特征向量

相似矩阵

定义 A , B A,B A,B都是 n n n阶矩阵,若存在可逆矩阵 P P P使
P − 1 A P = B P^{-1}AP=B P1AP=B
就称矩阵 A A A相似于矩阵 B B B, B B B A A A的相似矩阵,记成 A ∼ B A\sim B AB

性质
(1) A ∼ A A\sim A AA
(2)若 A ∼ B A\sim B AB,则 B ∼ A B\sim A BA
(3)若 A ∼ B A\sim B AB B ∼ C B\sim C BC,则 A ∼ C A\sim C AC
(4)若 A ∼ B A\sim B AB,则 A 2 ∼ B 2 A^2\sim B^2 A2B2
(5)若 A ∼ B A\sim B AB,则 A + k E ∼ B + k E A+kE\sim B+kE A+kEB+kE
(6)若 A A A可逆,则 A − 1 ∼ B − 1 A^{-1}\sim B^{-1} A1B1
(7)若 A 1 ∼ B 1 A_1\sim B_1 A1B1 A 2 ∼ B 2 A_2\sim B_2 A2B2,则 [ A 1 A 2 ] ∼ [ B 1 B 2 ] {\left[ \begin{matrix} A_1& \\ & A_2 \\ \end{matrix} \right]}\sim{\left[ \begin{matrix} B_1& \\ & B_2 \\ \end{matrix} \right]} [A1A2][B1B2]

矩阵相似必要条件
A ∼ B A\sim B AB
1. ∣ λ A − E ∣ = ∣ λ B − E ∣ ⇒ λ A = λ B |\lambda A-E|=|\lambda B-E|\Rightarrow\lambda_A=\lambda_B λAE=λBEλA=λB
2. r ( A ) = r ( B ) r(A)=r(B) r(A)=r(B)
3. ∣ A ∣ = ∣ B ∣ |A|=|B| A=B
4. Σ a i i = Σ b i i \Sigma a_{ii}=\Sigma b_{ii} Σaii=Σbii
5.若 A ∼ Λ A\sim\Lambda AΛ,则 B ∼ Λ B\sim\Lambda BΛ

判断两矩阵是否相似
A ∼ Λ A\sim\Lambda AΛ B ∼ Λ B\sim\Lambda BΛ,则矩阵 A ∼ B A\sim B AB

矩阵相似对角化

定理 A ∼ Λ    ⟺    ∃ A\sim\Lambda\iff\exists AΛ可逆 P P P使 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ则称A矩阵可相似对角化
A P = P Λ AP=P\Lambda AP=PΛ

P = ( γ 1 γ 2 γ 3 ) P=(\gamma_1 \gamma_2 \gamma_3) P=(γ1γ2γ3)

Λ = [ λ 1 λ 2 λ 3 ] \Lambda={\left[ \begin{matrix} \lambda_1& &\\ &\lambda_2 &\\ & &\lambda_3\\ \end{matrix} \right]} Λ=λ1λ2λ3

定理 A ∼ Λ    ⟺    A A\sim\Lambda\iff A AΛA n n n个线性无关的特征向量
推论 A A A n n n个不同的特征值,则 A ∼ Λ A\sim\Lambda AΛ

定理 λ \lambda λ A A A k k k重特征值,则 λ \lambda λ至多有 k k k个线性无关的特征向量

定理 A ∼ Λ    ⟺    A\sim\Lambda\iff AΛ λ \lambda λ是矩阵 A A A k k k重特征值,则 λ \lambda λ必有 k k k个线性无关的特征向量

公式 A n = P − 1 Λ n P A^n=P^{-1}\Lambda^nP An=P1ΛnP

判断矩阵是否可相似对角化
1.若矩阵为实对称矩阵则一定可对角化
2.若矩阵不是实对称矩阵且特征值不同,则一定可对角化
3.若矩阵不是实对称矩阵且特征值有重根,则判断重根对应线性无关的向量的个数,若重数等于无关向量的个数,则可对角化,反之则不然

实对称矩阵

定义 对于元素均为实数的矩阵 A A A,满足 A = A T A=A^T A=AT,则称 A A A为实对称矩阵

定理 A A A n n n阶实对称矩阵,则 A A A的特征值都是实数

定理 A A A n n n阶实对称矩阵, λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2 A A A不同的特征值, α 1 , α 2 \alpha_1,\alpha_2 α1,α2分别是对应于 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2的特征向量,则 α 1 \alpha_1 α1 α 2 \alpha_2 α2正交
简记 实对称矩阵特征值不同特征向量相互正交

定理任意一个 n n n阶实对称矩阵 A A A,总存在 n n n阶正交矩阵 Q Q Q使得 Q − 1 A Q = d i a g ( λ 1 λ 2 . . . λ n ) Q^{-1}AQ=diag(\lambda_1\lambda_2...\lambda_n) Q1AQ=diag(λ1λ2...λn)(对角矩阵)

归纳小结 实对称矩阵
1.特征值必为实数
2.不同特征值对应的特征向量必正交
3.必与对角矩阵相似
4.可用正交矩阵相似对角化
(1)求 A A A的特征值 λ 1 λ 2 λ 3 \lambda_1\lambda_2\lambda_3 λ1λ2λ3
(2)求特征向量 α 1 α 2 α 3 \alpha_1\alpha_2\alpha_3 α1α2α3
(3)改造特征向量
a.若 λ i ≠ λ j \lambda_i\neq\lambda_j λi=λj,只需单位化
b.若 λ i ≠ λ j \lambda_i\neq\lambda_j λi=λj

  • ( α i , α j ) = 0 (\alpha_i,\alpha_j)=0 (αi,αj)=0,只需单位化
  • ( α i , α j ) ≠ 0 (\alpha_i,\alpha_j)\neq0 (αi,αj)=0,施密特正交化

(4)构造正交矩阵
Q = ( γ 1 γ 2 γ 3 ) Q=(\gamma_1 \gamma_2 \gamma_3) Q=(γ1γ2γ3)

Q − 1 A Q = Λ = [ λ 1 λ 2 λ 3 ] Q^{-1}AQ=\Lambda={\left[ \begin{matrix} \lambda_1& &\\ &\lambda_2 &\\ & &\lambda_3\\ \end{matrix} \right]} Q1AQ=Λ=λ1λ2λ3

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值